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Abstract
We consider the problem of testing for change and estimating the unknown change-point in a sequence
of time-ordered observations from the binomial and Poisson distributions. Including the likelihood ratio test,
Gombay and Horvath (1990) tests are studied and the proposed change-point estimator is derived from their test
statistic. A power study of tests and a comparison study of change-point estimators are done via simulation.
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1. Introduction

Change-point problems have originally arisen in the context of quality control, where one typically
observes the output of a production line and would wish to signal deviation from an acceptable level.
The problem of abrupt changes in general arises in quite a variety of experimental and mathematical
sciences. For instance, in epidemiology one may be interested in testing whether the incidence of a
disease has remained constant over time, if not, in estimating the time of changes in order to suggest
possible causes. Detection of possible change-points of the number of patients or the number of death
due to a certain disease is also of interest according to time.

Gombay and Horvath (1990) considered the maximum likelihood type tests for change in the mean
of independent random variables and proved the limit distribution as a double exponential distribution.
Chen and Gupta (2000) considered the parametric change analysis including normal, exponential,
Poisson and binomial distributions.

The change-point analysis has been done for the continuous probability models than for the dis-
crete probability models. During the past several decades, a variety approaches have been developed
to identify change-points in binomial and Poisson distributions. Hinkley and Hinkley (1970) studied
the inference regarding the change-point for binomial distribution using maximum likelihood ratio
method. Fitzgibbon et al. (2002) investigated the coding of change-points in the information-theoretic
Minimum Message Length(MML) framework on a tractable binomial change-point problem. Worsley
(1983) discussed the power of likelihood ratio and cumulative sum tests for the change-point problem
incurred for a binomial probability model. Simpkin and Downham (2006) found that the change-point
Poisson process, which is suitable for analyzing non-infectious disorders with low prevalence rates,
does fit to the numbers of babies born with hypospadias in the Liverpool Congenital Malformations
Registry. Recently, Hawkins (2001) and Perry and Pignatiello (2008) proposed a maximum likelihood
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change-point estimator for the natural location parameter of densities belonging to the exponential
family including binomial and Poisson distributions.

‘We consider tests for the mean change and the change-point estimators in the discrete distributions.
The remaining part of this paper is organized as follows. In Section 2, the mean change model in the
binomial distribution is considered. In Section 3, we describe the mean change model in Poisson
distribution. In Section 4, we compare the performance of several test statistics and change-point
estimators. In Section 5, we conclude the paper with a brief discussion.

2. Binomial Model

The change-point occurring in a binomial model will be considered and studied. Let X;,X5,...,X,
be independent binomial random variables with success probability p;, p2,. .., p, respectively, say,
X; ~ B(n;, p;) and X; = m; = the number of successes fori = 1,2,...,n.

The hypothesis of interest is defined as

Hy:py=py=---=py,=p vs. Hipi= =p#prs1="""=Dn 2.1)

where k is the unknown location of the single change-point. On these hypotheses, Pettit (1980) sug-
gested a simple cumulative sum type statistic for the change-point with zero-one observations.
Under Hy, the log likelihood function is

n

log Lo(p) = Z fXip)= Z [log(ni) + m;log p + (n; — m;) log(1 — p)}
i=1

m;
i=1 !

and the maximum likelihood estimator(mie) of pis p = 37| m;/ i, n;. Under Hy, the log-likelihood
function is

. ]
n;

log Li(p1, pn) = Z [10‘5 (m) +m;log py + (n; — m;)log(1 — Pl)J
=1 '

n Py
+ Z {log( ’) +mjlog p, + (n; — m;)log(1 -«p,,)}
jk+1 m;

and the mle’s of p; = My/Ny and p, = (M, = My)/(N, - N;), where My = X, m; and Ny = 35, ;.
Consider

Lo(p)
L (ﬁlv ﬁn)
= M, log M, + (N, — M,}log(N, —~ M) — N, log N,

- M; log M, — (N, - M) log(Nk - M)+ Ny lOgNk

- M log M; — (N — M) log(N;, — M) + N_log N, 2.2)

log A = log = log Lo(p) — log Ly(p1. pn)

where M; = M, — My and N; = N, - N,.
Define I(n,m) = mlogm + (n — m)log(n — m) — nlogn. Then -2 log maximum likelihood-ratio
procedure statistic Ly is

Li = ~21og A = 2[INe, My) + [N}, M) = (N, M) 23)
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which has chi-square distribution as its asymptotic distribution. Therefore the likelihood based test
statistic is then given by

ULRT = max Lk. (24)

1<k<n

The likelihood ratio test(LRT) rejects Hy if U > ¢. Worsley (1983) obtained the exact null and
alternative distributions of likelihood ratio test statistic for the binomial distribution. Conditional on
M1, My has the hypergeometiric distribution with Ny, 1, Ni, Np+1 — Ni = ngeq, that is,

(:)C=)
(")

PM = ulMy = v) =

Let the events be expressed and defined as
(L <x} = A = {My :ap < My < by},

where a; = inf {M; : Ly < x} and b, = sup {M; : L; < x}. To derive the null distribution of U is to
evaluate P(("_, Ax) conditional on M,, = m. Let

k
F(v) = P(ﬂAile = v], k=1.2.....n
i=1

be the conditional probability of {L, < x} given My = v, for example, Fi(v) = 1 ifa; <u < v < by.
The general iterative procedure for evaluating P(();_, Ax) gives the following probability equation
shown in Chen and Gupta (2000):

Under Hy, if p; =p,i=1,2,...,k+1fork<n-—1,

by
Fin®) = )" Fuhe(w,v),  ap <v < b,

u=ay

where forO0 < u < N, 0 <v—u < ngyq,

h(u, vy = (Nm)
v
3. Poisson Model
In this section we consider the change-point problems for Poisson model. Let X;, X3, . .., X, be inde-
pendent Poisson random variables with parameters Ay, A, .. ., 4, respectively.

The hypothesis of interest is defined as
Hy: ===, =2 vs. H: Q= =hZFha=""=2, 3.1

where k is the unknown location of the single change-point.
Under Hy, the likelihood function is

X; e—nﬂ/lz:’:l X;

n n _/l/l
L@ = [ [ =] |5 =
i=1 i=1 - =1
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and the maximum likelihood estimator(mle) of 1is A = X = 2wy Xi/n. Under H;, the likelihood
function is

&
s oy Xi . n i
e 1‘/11/1;2?71 i e‘(n—]‘)/{n/lnzl:kd-l X;

L) = —— : ;
e, x:! M X3!

and the mle’s of A; and A, are respectively,

n
i=k+1 X;

ﬁn = Xpx = -

A =X =210 (3.2)
Denote by M;, = Zle X; and M,i =M, - M; = 27,,, Xi- Then under Hy, A= M, /n and under H,,
A = Myfk,and 4, = M +/(n — k). Hence, the maximum likelihood-ratio procedure test statistic is

1o () Moy M

k ’ k
———— =-Mlog = — M, log —-
Ly (ﬂl,/ln) k n~k

With L; = -2log A, the likelihood based test statistic is then given by

M,
log A = log + M, log —nﬁ

Uirr = max Ly. (3.3)
Igk<n

The likelihood test rejects Hy if U > ¢. Let the events be expressed and defined as
{Ly <x} = A= {My i ap < My < by},

where a, = inf (M : Ly < x} and by = sup{M, : Ly < x}. To derive the null distribution of U we
evaluate P((");_, Ac) conditional on M = m. Let

k
Fk(v)zP(ﬂAg!Mk =V]? k=1,2,...,n

i=1

so that F(v) = 1if a; < u < v < b;. The general iterative procedure for evaluating P(ﬂzz i Ak) gives
the following probability equation shown in Chen and Gupta (2000) :
fAa=4i=12,.. ,k+1fork>2.

By
Fra(n) = Z Fh(u,v), ap v < by,

pZEle7Y

‘ K
o=y

Based on the likelihood, the change-point can be estimated as

where for0 <u <v < m,

kigrr = arg max L. (3.4)

1<gk<n

in Chen and Gupta (2000).
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4. Numerical Comparison

A simulation study is conducted to see the power of tests according to the amount of change, and
the location of change. Gombay and Horvath (1990) proposed the test statistic as a function of mle’s
based on

Zr=2 {kg ()_(k) +(m-k)g ()_(nﬁk) —ng ()_()} , 4.1

where in the binomial case, p; = X; and p, = X, in (2.2) where in the Poisson case, 4, = X; and
A, =X,xin (3.2) and g is a given function. For the hypotheses (2.1) and (3.1), their tests reject Hp in
favor of H, for large values of

il

. 1z
= — 4.2
Z(i, j) max o’ (4.2)
where g@ is the second derivative of g and suitably chosen i and j. For testing of change, the LRT
based test Ugrr, Gombay and Horvath (1990) tests Ty with g((7) = 12 and Tgpp with go(f) = exp(r)
are compared in power study. Let

Tom = max [kX? + (n — kX2, —nX?|, (4.3)
i<k<j

S ‘k exp (Xk) +(n-k) exl’i (X',l_k) —nexp (X)' s
i<k<j exp (X)

For the change-point estimation, the ability to detect the change-point is studied with calculation of
the mean of change-point estimates and mean square error(MSE). For the power study, @ = 0.10 and
a = 0.05 level critical values were evaluated from the empirical distribution in 10,000 repetitions.

Note that the maximum of test for change occurs at the change-point. Therefore we consider the
change-point estimation based on Gombay and Horvath (1990) test as follows:

koy = arg max Z(i, j), 4.5)
<i<n

where kg with g1(t) = % and kg with g2(t) = exp(r) for Z(i, j) in (4.2).
Gombay and Horvath (1990) showed that the limiting distribution of their test is

Z
—(rn1,2m2) — sup |V(s)| (4.6)
g 0<s<A

in distribution, where 0 < 4} < 1—A; < Tasn — oo, my = ndy, my = n(l — A3), A = 1/2{log(1 -
A1 = A2)/ 1 A2} and {V(s), —o0 < s < oo} is an Ornstein-Uhlenbeck process, i.e. a Gaussian process

with mean zero and covariance exp(—|r — s|). Therefore the distribution of the change-point estimator
can be shown as

Z ’
arg max ——(mleZ) — arg max {s : sup IV(S)I} asn — oo. 4.7
L H g 0<s<A
4.1. Binomial distribution case
A random sample Xj, X», ..., X, are generated from the binomial distribution say, X; ~ B(n;, p;) and

x; =m;fori=1,2,...,n where m; = the number of successes. The success probability level change
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Table 1: Power comparison study of Change-point tests in Binomial distribution with the sample size n=50 and
the change-point T = 15, T = 25, T = 40 in 1,000 repetitions (start point = 5, end point =45)

T=15 =25 T=40
Test a=0.10 a =0.05 a=0.10 a =0.05 a =010 a = 0.05

=05 Urrr 0.979 0.955 0.996 0.985 0.930 0.874
- 0'3 TeH1 0.972 0.948 0.994 0.980 0.928 0.871
p2= Teur 0.958 0.921 0.988 0.969 0.904 0.843
P =05 Urrr 0.549 0413 0.569 0.469 0.410 0.285
B 0' 4 TGH 0.541 0.409 0.563 0.469 0.409 0.285
P2 =0 Tom 0.506 0.376 0.538 0.440 0.37 0.268
P =05 Urrr 0.224 0.139 0.252 0.167 0.197 0.118
_ 0'55 Teai 0.222 0.145 0.252 0.174 0.198 0.120
p2=" T2 0.241 0.153 0.264 0.182 0.205 0.131
p1 =05 Uirr 0.513 0.392 0.586 0.460 0.433 0.311
! B 0.6 ToH1 0.499 0.392 0.583 0.459 0.427 0.312
p2=b Tez 0.535 0.434 0.600 0.491 0.444 0.342

Table 2: Comparison of Change-point Estimators with n = 50, T = 15, t = 25 and 7 = 40 in 1,000 Repetitions
in the Binomial distribution

=15 T=25 T=40
Estimator Mean MSE Mean MSE Mean MSE
p1 =05 fLRT 15.533 19.027 25.028 15.150 38.308 40.950
—03 kGH 15.197 15.001 24.826 15.142 38.157 42217
p2=5 ko 14.994 14.382 24.636 15.124 37.863 47.347
p1=05 {cuer 19.100 123.014 24.912 75.140 32.464 202.558
=04 lme 18.893 118.261 24.814 74.110 32.343 203.885
p2=5 kG 18.667 116.331 24.545 74.457 32.005 211.027
p1=05 {cLRT 23.702 254.568 24273 144.883 27.431 335.781
=055 kGt 23.705 254.649 24.224 144.246 27.447 334.899
p2="5 ko> 23.8314 256.754 24474 143.672 27.639 330.745
1 =05 chRT 18.904 124.316 24.216 86.610 32.142 204.638
- 06 kcm 18.612 117.448 24.067 84.623 32.009 206.555
p2=5 koo 19.147 126.493 24.391 85.549 32.291 200.015

model with one change-point is as follows:

=] P i=1,...k
Pz—{p2=p1+A, i=k+1,...,n, 4.8)

where p; = 0.5 without loss of generality. The number of trials is fixed as n; = 10. The amount
of change A = -0.2,-0.1,0.05,0.1, the sample size n = 50 and the location of change at 7/n =
0.3,0.5,0.8 are considered. As A increases, the power of the tests and the ability of change-point
estimation increase. Table 1 shows that the powers of Urrr, Tgy1 and Tgys have the same pattern
in which their powers are best when the change-point occurs in the middle of the data sequence
since the sample sizes before and after the change-point are balanced. Therefore the location of the
change-point affects the power. Ty has more power when the success probability decreases after
the change-point while Ty, has more power when the success probability increases after the change-
point. Unlike LRT, Gombay and Horvath tests depend more on the change pattern. Table 2 gives
that Gombay and Horvath type change-point estimators have slightly smaller MSE than LRT based
when the success probability decreases after change-point. Overall the change-point of 7 = 15 is
overestimated and the change-point of T = 40 is underestimated while the change-point of 7 = 25 is
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Table 3: Power comparison study of Change-point tests in Poisson distribution with the sample size n=50 and
the change-point 7 = 15, 7 = 25, 7 = 40 in 1,000 repetitions (start point = 5, end point = 45)

=15 =25 =40

Test a=0.10 a = 0.05 a=0.10 a =005 a=0.10 a =0.05
A =7 Urrr 0.700 0.586 0.784 0.684 0.594 0.462
dh=5 TG 0.587 0.453 0.701 0.574 0.508 0.361

T 0.091 0.042 0.121 0.050 0.075 0.038
A =7 Urrr 0.247 0.162 0.254 0.172 0.204 0.127
=6 TeH 0.217 0.132 0.220 0.147 0.177 0.101

Tou: 0.065 0.030 0.064 0.023 0.071 0.031
A =7 Urrr 0.240 0.159 0.279 0.170 0.200 0.141
B =8 Tom 0.271 0.189 0.315 0.207 0.226 0.158

[ 0.389 0.235 0.427 0.267 0.329 0.205
A =7 Urrr 0.600 0.448 0.651 0.552 0.480 0.353
5=9 Tem 0.673 0.553 0.711 0.622 0.535 0.422

Tem 0.897 0.797 0.877 0.768 0.673 0.536

Table 4: Comparison of Change-point Estimators with n = 50, 7 = 15, 7 = 25 and 7 = 40 in 1,000 Repetitions
in the Poisson distribution

=15 =25 T=40
Estimator Mean MSE Mean MSE Mean MSE
A =7 ]fLRT 17.184 69.868 24.902 48.780 34.851 136.615
b=5 Ifcm 16.513 61.021 24.258 50.240 32.646 165.168
kG 13.511 49451 19.910 92.894 27.024 349.618
A =7 {CLRT 22.139 205.893 25.046 130.246 28.169 311.625
b=6 IEGH] 21.602 196.960 24.848 130.996 27.425 330.317
kG2 18.571 161.701 21.945 150.365 24.120 427.450
A =7 IfLRT 22.363 212.035 25.253 141.107 28.670 314.032
1=8 r’f(;m 22.825 220.455 26.080 137.364 29.206 298.132
ko 26.243 295.163 28.753 156.247 31.613 249,589
A =7 /fLRT 18.792 112.210 25.425 70.321 33.113 182.973
=9 /me 19.341 118.479 26.174 71.068 33916 162.394
kGro 25435 246.637 30.523 110.793 37.277 108.845

suitably estimated. All the estimators have the less MSE when the change-point occurs in the middle
than when the change-point occurs in the former part or latter part of data.

4.2. Poisson distribution case

A random sample X, X,,...,X, are generated from the Poisson distribution with the parameter
A1, A2, ..., 4. The mean level change model with one change-point is as follows:
[ A i=1,... .k,
A’_{/12:/11+A, i=k+1,...,n, 4.9

where A; = 7 without loss of generality. The amount of change A = -2, -1, 1,2, the sample size
n = 50 and the locations of change at /n = 0.3,0.5, 0.8 are considered.

Table 3 gives the powers of tests for the mean change in Poisson distributions. Upgr has more
power than Ty, Tgr2 when the mean is decreasing after the change-point and Uy gr has less power
than Ty, Tee in the increasing mean case. Unlike U, gy, Gombay and Horvath tests, T and T
heavily depend on the change pattern. Table 4 shows that the change-point estimator k;zr based on
LRT has smaller MSE than kg, kg2 When the change-point occurs in the middle of data sequence,
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which is the case of T = 25 from n = 50 samples. When the change-point occurs in the former part or
the latter part of data, kg and IAcGHZ have smaller MSE than &, zr. Overall the change-point of 7 = 15
is overestimated and the change-point of T = 40 is underestimated while the change-point of T = 25
is suitably estimated. Therefore the change-point estimation depends on the location of change-point.

5. Concluding Remarks

We considered testing for change and estimating of the change-point when the observations are from
the discrete distributions such as the binomial and Poisson distributions. The numerical results lend
support to the argument that the likelihood ratio test and change-point estimation are not always best
even under the parametric distributional assumptions. But the function of the maximum likelihood
estimator could play a role in change-point estimation. Also the numerical results show that testing
and estimating depend on the location of change-point. Therefore one possible conclusion is that one
should choose a test statistic and an estimator on a subjective basis depending on where one expects a
change to take place.
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