References
- ANDERSEN, P. K., BORGAN, O., GILL, R. D. AND KEIDING, N. (1993). Statistical Models Based on Counting Processes, Springer-Verlag, New York
- CARR, P., GEMAN, H., MADAN, D. B. AND YOR, M. (2002). 'The fine structure of asset returns: An empirical investigation', Journal of Business, 75, 305-332 https://doi.org/10.1086/338705
- CHOW, Y. S. AND TEICHER, H. (.1997). Probability Theory: independence, interchangeability, martingales, Springer-Verlag, New York
- Cox, J. C., Ross, S. A. AND RUBINSTEIN, M. (1979). 'Option pricing: A simplified approach', Journal of Financial Economics, 7, 229-263 https://doi.org/10.1016/0304-405X(79)90015-1
- DUFFIE, D. (1996). Dynamic Asset Pricing Theory, Princeton University Press, Princeton
- DUFFIE, D. AND RICHARDSON, H. R. (1991). 'Mean-variance hedging in continuous time', The Annals of Applied Probability, 1, 1-15 https://doi.org/10.1214/aoap/1177005978
- EBERLEIN, E. AND KELLER, U. (1995). 'Hyperbolic distributions in finance', Bernoulli, 1, 281-299 https://doi.org/10.2307/3318481
- ENGLE, R. F. AND RUSSELL, J. R. (2002). 'Analysis of high frequency financial data', In Handbook of Financial Econometrics (Ait-Sahalia, Y. and Hansen, L. J'., eds)
- FREY, R. (2000). 'Risk minimization with incomplete information in a model for high-frequency data', Mathematical Finance, 10, 215-225 https://doi.org/10.1111/1467-9965.00090
- FOLLMER, H. AND SCHWEIZER, M. (1991). 'Hedging of contingent claims under incomplete information', In Applied Stochastic Analysis (Davis, M. H. A. and Elliott, R. J., eds.), 389-414, Gordon and Breach, New York
- HONG, D. AND WEE, I. (2003). 'Convergence of jump-diffusion models to the Black-Scholes model', Stochastic Analysis and Applications, 21, 141-160 https://doi.org/10.1081/SAP-120017536
- JACOD, J. AND SHIRYAEV, A. N. (1987). Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin
- KARATZAS, I. AND SHREVE, S. E. (1991). Brownian Motion and Stochastic Calculus, Springer-Verlag, New York
- KIRCH, M. AND RUNGGALDIER, W. J. (2004). 'Efficient hedging when asset prices follow a geometric Poisson process with unknown intensities', SIAM Journal on Control and Optimization, 43, 1174-1195 https://doi.org/10.1137/S0363012903423168
- KURTZ, T. G. AND PROTTER, P. (1991). 'Weak limit theorems for stochastic integrals and stochastic differential equations', The Annals of Probability, 19, 1035-1070 https://doi.org/10.1214/aop/1176990334
- LEON, J. A., SOLE, J. L., UTZET, F. AND VIVES, J. (2002). 'On Levy processes, Malliavin calculus and market models with jumps', Finance and Stochastics, 6, 197-225 https://doi.org/10.1007/s007800100055
- MADAN, D. B. AND SENETA, E. (1990). 'The variance gamma (V.G.) mode: for share market returns', Journal of Business, 63, 511-524 https://doi.org/10.1086/296519
- RACHEV, S. T. AND RUSHENDORF, L. (1994). 'Models for option prices', Theory of Probability and Its Applications, 39, 120-152 https://doi.org/10.1137/1139005
- SCHAL, M. (1994). 'On quadratic cost criteria for option hedging', Mathematics of Operations Research. 19. 121-131 https://doi.org/10.1287/moor.19.1.121
- SCHWEIZER, M. (1992). 'Mean-variance hedging for general claims', The Annals of Applied Probability, 2, 171-179 https://doi.org/10.1214/aoap/1177005776
- SCHWEIZER, M. (1995). 'Variance-optimal hedging in discrete time', Mathematics of Operations Research, 20, 1-32 https://doi.org/10.1287/moor.20.1.1