AN ASYMPTOTIC DECOMPOSITION OF HEDGING ERRORS

  • Song Seong-Joo (Department of Statistics, Purdue University) ;
  • Mykland Per A. (Department of Statistics, The University of Chicago)
  • Published : 2006.06.01

Abstract

This paper studies the problem of option hedging when the underlying asset price process is a compound Poisson process. By adopting an asymptotic approach to let the security price converge to a continuous process, we find a closed-form hedging strategy that improves the classical Black-Scholes hedging strategy in a quadratic sense. We first show that the scaled Black-scholes hedging error has a limit in law, and that limit is decomposed into a part that can be traded away and a part that is purely unreplicable. The Black-Scholes hedging strategy is then modified by adding the replicable part of its hedging error and by adding the mean-variance hedging strategy to the nonreplicable part. Some results of simulation experiment s are also provided.

Keywords

References

  1. ANDERSEN, P. K., BORGAN, O., GILL, R. D. AND KEIDING, N. (1993). Statistical Models Based on Counting Processes, Springer-Verlag, New York
  2. CARR, P., GEMAN, H., MADAN, D. B. AND YOR, M. (2002). 'The fine structure of asset returns: An empirical investigation', Journal of Business, 75, 305-332 https://doi.org/10.1086/338705
  3. CHOW, Y. S. AND TEICHER, H. (.1997). Probability Theory: independence, interchangeability, martingales, Springer-Verlag, New York
  4. Cox, J. C., Ross, S. A. AND RUBINSTEIN, M. (1979). 'Option pricing: A simplified approach', Journal of Financial Economics, 7, 229-263 https://doi.org/10.1016/0304-405X(79)90015-1
  5. DUFFIE, D. (1996). Dynamic Asset Pricing Theory, Princeton University Press, Princeton
  6. DUFFIE, D. AND RICHARDSON, H. R. (1991). 'Mean-variance hedging in continuous time', The Annals of Applied Probability, 1, 1-15 https://doi.org/10.1214/aoap/1177005978
  7. EBERLEIN, E. AND KELLER, U. (1995). 'Hyperbolic distributions in finance', Bernoulli, 1, 281-299 https://doi.org/10.2307/3318481
  8. ENGLE, R. F. AND RUSSELL, J. R. (2002). 'Analysis of high frequency financial data', In Handbook of Financial Econometrics (Ait-Sahalia, Y. and Hansen, L. J'., eds)
  9. FREY, R. (2000). 'Risk minimization with incomplete information in a model for high-frequency data', Mathematical Finance, 10, 215-225 https://doi.org/10.1111/1467-9965.00090
  10. FOLLMER, H. AND SCHWEIZER, M. (1991). 'Hedging of contingent claims under incomplete information', In Applied Stochastic Analysis (Davis, M. H. A. and Elliott, R. J., eds.), 389-414, Gordon and Breach, New York
  11. HONG, D. AND WEE, I. (2003). 'Convergence of jump-diffusion models to the Black-Scholes model', Stochastic Analysis and Applications, 21, 141-160 https://doi.org/10.1081/SAP-120017536
  12. JACOD, J. AND SHIRYAEV, A. N. (1987). Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin
  13. KARATZAS, I. AND SHREVE, S. E. (1991). Brownian Motion and Stochastic Calculus, Springer-Verlag, New York
  14. KIRCH, M. AND RUNGGALDIER, W. J. (2004). 'Efficient hedging when asset prices follow a geometric Poisson process with unknown intensities', SIAM Journal on Control and Optimization, 43, 1174-1195 https://doi.org/10.1137/S0363012903423168
  15. KURTZ, T. G. AND PROTTER, P. (1991). 'Weak limit theorems for stochastic integrals and stochastic differential equations', The Annals of Probability, 19, 1035-1070 https://doi.org/10.1214/aop/1176990334
  16. LEON, J. A., SOLE, J. L., UTZET, F. AND VIVES, J. (2002). 'On Levy processes, Malliavin calculus and market models with jumps', Finance and Stochastics, 6, 197-225 https://doi.org/10.1007/s007800100055
  17. MADAN, D. B. AND SENETA, E. (1990). 'The variance gamma (V.G.) mode: for share market returns', Journal of Business, 63, 511-524 https://doi.org/10.1086/296519
  18. RACHEV, S. T. AND RUSHENDORF, L. (1994). 'Models for option prices', Theory of Probability and Its Applications, 39, 120-152 https://doi.org/10.1137/1139005
  19. SCHAL, M. (1994). 'On quadratic cost criteria for option hedging', Mathematics of Operations Research. 19. 121-131 https://doi.org/10.1287/moor.19.1.121
  20. SCHWEIZER, M. (1992). 'Mean-variance hedging for general claims', The Annals of Applied Probability, 2, 171-179 https://doi.org/10.1214/aoap/1177005776
  21. SCHWEIZER, M. (1995). 'Variance-optimal hedging in discrete time', Mathematics of Operations Research, 20, 1-32 https://doi.org/10.1287/moor.20.1.1