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Abstract
A finite dam under P;\",/[,.-policy is considered, where the input of water is formed by a Wiener process
subject to random jumps arriving according to a Poisson process. Explicit expression is deduced
for the stationary distribution of the level of water. And the long-run average cost per unit time is
obtained after assigning costs to the changes of release rate, a reward to each unit of output, and

a penalty which is a function of the level of water in the reservoir.
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1. Introduction

Since Faddy(1974) introduced a P-policy to a finite dam with input formed by a Wiener
process, the model has been generalized in various ways by many authors. Yeh(1985) and Yeh and
Hua(1987) introduced a more general policy, P,{‘f’,-policy, to the finite dam with input of Wiener
process and obtained the long-run average cost per unit time after assigning costs to the changes
of releasing rate, a reward to each unit of output, and a penalty depending on the level of water.
Lee and Ahn(1998) applied the PM-policy to an infinite dam with input formed by a compound
Poisson process. Abdel-Hameed(2000) studied the Py’ -policy in the infinite dam where the input
process is a compound Poisson process with positive drift. Bae, Kim and Lee(2003) generalized
Abdel-Hameed’s model to the case of finite dam when the input is formed by a compound Poisson
process and the level of water between inputs decreases linearly at a constant rate. Bae, Kim and
Lee(2003) obtained the long-run average cost per unit time after assigning the same costs to the
dam as Yeh(1985) did.

We, in this paper, consider a finite dam under Pff,-policy where the input process is a Wiener
process subject to compound Poisson jumps. The level of water is initially at 0 and thereafter
follows a Wiener process with drift 4 (—0o < u < o), variance o2 > 0, and reflecting barriers at
both 0 and V, where V is the capacity of the reservoir. Meanwhile, the level of water also increases
jumpwise due to the instantaneous inputs such as rains which occur according to a Poisson process
with rate v > 0. The amounts of instantaneous inputs are independent and identically distributed

with distribution function ¢ and mean m. If the level of water exceeds V after an instantaneous
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input, we assume that the exceeding amount of water over V overflows immediately so that the
level of water becomes V. We also assume that vm + g > 0 so that the level of water eventually
increases. At the moment when the level of water crosses a threshold A (0 < A < V') over, we start
to release water at a constant rate M > 0. Note that the level of water now follows the Wiener
process of drift @ — M and variance o2, which still have 0 and V as reflecting barriers and are
subject to compound Poisson jumps. It continues to release water until the level of water reaches
7 (0 < 7 < A), and at this moment we stop releasing water. Thereafter, we wait until the level of

water exceeds the threshold A again.

Z(#)

Figure 1: {Z(t),t > 0}

Let {Z(t),t > 0} be the level of water at time ¢ in our model. A sample path of Z(t) is
shown in Figure 1. To obtain the stationary distribution of {Z(¢),t > 0}, we divide the process
{Z(t),t > 0} into the following two processes: Process {Zy(t),t > 0} is formed by separating from
the original process the periods of releasing rate being 0 and by connecting them together. Process
{Zm(¢),t > 0} is formed by connecting the rest of the original process together.

2. Stationary distribution of Z(t)

Let Ty and Ty denote in a cycle the periods of releasing rate being 0 and M, respectively. That
is, Tp is the period from a renewal point to the point where Z(t) crosses A over for the first time
and Ty is the period from the latter point to the next renewal point. We also denote the process
of the level of water during Tp by Zo(t) and the process during Tas by Zas(2).

Let Fi(z,t) = P{Zo(t) < z} and Fa(z,t) = P{Zm(t) < z} denote the distribution of Zo(t) and
Zwn(t), respectively. Note that {Zo(t),t > 0} and {Zam(t),t > 0} are a regenerative process. Define

Ty
w(zo) = E[/O h(Zo(0))dt|Z0(0) = mo], for 0 <o < A
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and
Ty
u(zo) = E[/ h(Z (£))dt| Zas (0) = xo], for 7<xzo<V,
0]

with a penalty function h(u) is assigned to the dam per unit time when Z(t) = 2(0 < 2z < V). Then,
E(To) and E(Ta) can be easily drive from w(r) and E[u(Zo(T0))|Z0(0) = 7] by putting h(u) = 1.
Also, we define

h(u)z{ 1, u<z

0, otherwise.

Then, w(r) and E[u(Zo(75))|Z0(0) = 7] are the expected period where Zi(t) and Z3(t) are less
than or equal to = during To and Ta. Since {Z1(t),t > 0} {Z2(t),t > 0} are a regenerative process,
the stationary distribution of Z1(t) and Z,(t) are given by

w(z, T)

Fife) = Jim Flet) = %57

and
Elu(Z0(T0))| Z0(0) = 7]
E[Twm| .
Let T be the generic random variable denoting the time between successive renewals. Then

FQ(I) = t[i'rgon(CE, t) =

T* = To + Tu. (1)

Proposition. F(z) is given by the following weighted average of Fi(z) and Fa(z):

E(To) E(Twm)
5 D@+ B

Fa(z). (2)

3. Long-run average cost per unit time

We assign four costs to the dam. K1 M is the cost of changing releasing rate from 0 to M and
KyM the cost of changing releasing rate from M to 0. A reward is given to each unit of output
while the water being released. Consider the points where Z(t) crosses 7 down for the first time
after we start to release water. These are the points where we close the gate of the dam. Note that
the sequence of these points forms an embedded delayed renewal process. Note that in the model
of Yeh(1985) the level of water crosses A over always through a continuous path and in Bae, Kim
and Lee(2003) always by jump. In our model, however, Z(t) crosses A over in both ways.

By making use of the renewal reward theorem[Ross(1983, p.78), we can see that the long-run

average cost per unit time is given by

E|[cost during a cycle]
Eflength of a cycle]

_ (Kt Ko))M + w(r) - ME[Tm] + E[w(Z0(Tb))|Z0(0) = 7] 3)
E(To) + E(Twm) '

C(M M\ 71) =
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4. Evaluations

In this section, we evaluate the functions w(z) for all 0 < z < A, u(z) for all 7 < £ < V and the
distribution of Zo(Tp) given that Zo(0) = z for all 0 € z < X by establishing backward differential
equations and converting the equations into renewal type equations. Then, w(7) is nothing but
w(z)|z=- and E[u(Zo(To))|Zo(0) = 7] is easily obtained from u(z) by conditioning on Zy(Tp) while
setting € = 1.

Let Bo(t) and Bas(t) are Wiener process with drift 4 and u — M, variance o2, and reflecting
barrier 0 and V, respectively. Let Ag and Aps are the increment of Bo(t) and Ba(t) in an interval

of length h, respectively.
4.1 w(x), for 0 <x < A
To evaluate w(z), we first need to show that w(z) satisfies the boundary conditions :
Lemma 1. w(}A) =0 and w’(0) = 0.
We now derive the backward differential equation for w(z). Suppose that Zo(0) =z, 0 <z < A.

Conditioning on whether a jump occurs or not during [0, h] gives that

E[foh F(Bo(t))dt + w(z + Ao)], if no jump occurs
w(z) = E[foh F(Bo(t))dt], if a jump occurs and Y > XA — z — Ag
E[foh f(Bo(#))dt + w(z + Ao+ Y)], ifa jumpoccursand ¥ < A —z — Ao.

Hence, we have
h
w(z) = (1 — vh)E [/ F(Bo(t))dt + w(z + Ao)] + o(h)
0
+UhE [/h F(Bo(t))dtls + Y + Ao > A] Priz +Y + Ao > A}
0]

h
+VhE [/ F(Bo(t))dt + w(z + Ao + V)& + Y + Ag < ,\] Pr{z +Y + Ao < A}.
0

Taking Taylor series expansion on w(z + Ay), rearranging the equation and letting h — 0 yield
/ (72 " A=
0= fla) + (@) + Gu' (o) ~vula) +v [ w(e+ 1)), ()
0

For the convenience of analysis, we define w(z) = w(A — z). Then, w(z) satisfies the following

renewal type equation:

Lemma 2.

w(z) = o O - 2 / Fa(t)dt + / Bz — AW (1) (5)
0 0
with boundary conditions @w(0) = 0 and @'(A) = 0, where p = vm, Fx(z) = [ f(A — t)dt, and
W(z)= [ (%‘;— + %@Ge(t)>dt with G. being the equilibrium distribution of G.
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It is well known [see, for example, Asmussen(1987, p.113)] that the unique solution of the

renewal type equation in Lemma 2 is
x
B(z) = @ (0)(z * M)(z) — % / M(z — t)Fx(t)dt, (6)
0

where M(z) = 32 W™ (z). Here, W™ denotes the n-fold Stieltjes convolution of W with W(®
being the Heaviside function. To get %’(0), we differentiate equation (6) with respect to z and put
x = )\ with boundary condition @'(\) = 0, then

2 ( S M (N~ t)Fa(t)dt + FA()‘))
M(X)

Finally, w(z) = w(A —z),0<z < A

4.2 u(x), for r<x <V

Note again that in our model the level of water can cross A over either through a continuous
path or by jump. Hence, we first assume that V is infinite and obtain the distribution of L(z) =
Zo(To) — A, the exceeding amount over A, given that Zo(0) = z, 0 < z < A, which is needed later
to get the formula of E{u(Zs(T5))}|Z0(0) = 7].

Let Pi(z) = Pr{L{z) > I}, | > 0, then by an argument similar to that in Lemma 1, we have
Py(A) = 0 and P/(0) = 0 as boundary conditions. P;(z) = Pi(\ — z) satisfies the following renewal
type equation:

Lemma 3.
Y / “Gut)dt + / " Bw — )aw (1) )
0 0

with boundary conditions P;(0) = 0 and P}()\) = 0, where Gi(z) = p[Ge(z + 1) — Go(1)).

The renewal type equation in Lemma 3 has the unique solution as follows:
_ _ 9 [=
Pi@) = PO)(e* M)(2) - 5 [ MGz = G0, ®)
0

Differentiating the above equation with respect to z and using the boundary condition P/()\) = 0,
we have
=1 (fo* M’(A - t)Gi(t)dt + G’l(/\))
M(\)
Finally, Pi(z) = P,(A—x). Now, when V < oo, note that survival function of L(z) is still P,(z),
for 0 <1 <V — A, but having a discrete probability at { = V' — A, which is Py_x(x).

P/(0) =

Remark 1. Note that Py(z) is the probability that Zo(t) exceeds A over by jump and 1 — Po(z) is
the probability that Zo(t) crosses A over through a continuous path.

Now, we evaluate u(z), for 7 <z < V. Let 4(z) = u(V — z), then arguments similar to those
used to derive w(z) show that () satisfies boundary conditions @(V — 7) =0 and @'(0) = 0, and
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the following renewal type equation:

Lemma 4.
() = (1 _ Q{J—Afx - -iij /O Ge(t)dt) a(0) — % /O Fy(t)dt + /0 (s — )dU (t) 9)

with boundary conditions @(V — 7) = 0 and @/(0) = 0, where Fy(x) = [ f(V — t)dt, and
Uz) =[5 (3 + %G.(t)) dt.

The unique solution of the renewal type equation in Lemma 4 is given by

(@) = (N(z) - %Azi(m * N)(z) — % / " Nz - t)Ge(t)dt> (0)
4]
_523/0 Nz — t)Fv (t)dt, (10)

where N(z) = Y22 U™ (z). To get @(0), we put = = V — 7 in the above equation and use
the boundary condition @(V — 7) = 0, then we have

Z [VTTN(V -7 = t)Fv(t)dt
(1 _ 2M§UV——T)> NV -1 -% IOV—T NV -7— t)Ge(t)dt-

Finally, u(z) = a4(V — z), for r <z <V, and

w(0) =

V-2
Elu(Zo(Tv))|Zo(0) = 7} = Efu(A + L{7)] = /0 u(X + DdP(T). 1y
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