• 제목/요약/키워드: Poisson equations

검색결과 195건 처리시간 0.046초

THE p-LAPLACIAN OPERATORS WITH POTENTIAL TERMS

  • Chung, Soon-Yeong;Lee, Hee-Soo
    • 대한수학회논문집
    • /
    • 제26권4호
    • /
    • pp.591-601
    • /
    • 2011
  • In this paper, we deal with the discrete p-Laplacian operators with a potential term having the smallest nonnegative eigenvalue. Such operators are classified as its smallest eigenvalue is positive or zero. We discuss differences between them such as an existence of solutions of p-Laplacian equations on networks and properties of the energy functional. Also, we give some examples of Poisson equations which suggest a difference between linear types and nonlinear types. Finally, we study characteristics of the set of a potential those involving operator has the smallest positive eigenvalue.

EULER-MARUYAMA METHOD FOR SOME NONLINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH JUMP-DIFFUSION

  • Ahmed, Hamdy M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권1호
    • /
    • pp.43-50
    • /
    • 2014
  • In this paper we discussed Euler-Maruyama method for stochastic differential equations with jump diffusion. We give a convergence result for Euler-Maruyama where the coefficients of the stochastic differential equation are locally Lipschitz and the pth moments of the exact and numerical solution are bounded for some p > 2.

A POSTERIORI ERROR ESTIMATORS FOR THE STABILIZED LOW-ORDER FINITE ELEMENT DISCRETIZATION OF THE STOKES EQUATIONS BASED ON LOCAL PROBLEMS

  • KIM, KWANG-YEON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제21권4호
    • /
    • pp.203-214
    • /
    • 2017
  • In this paper we propose and analyze two a posteriori error estimators for the stabilized $P_1/P_1$ finite element discretization of the Stokes equations. These error estimators are computed by solving local Poisson or Stokes problems on elements of the underlying triangulation. We establish their asymptotic exactness with respect to the velocity error under certain conditions on the triangulation and the regularity of the exact solution.

QUEUE LENGTH DISTRIBUTION IN A QUEUE WITH RELATIVE PRIORITIES

  • Kim, Jeong-Sim
    • 대한수학회보
    • /
    • 제46권1호
    • /
    • pp.107-116
    • /
    • 2009
  • We consider a single server multi-class queueing model with Poisson arrivals and relative priorities. For this queue, we derive a system of equations for the transform of the queue length distribution. Using this system of equations we find the moments of the queue length distribution as a solution of linear equations.

Drift Diffusion of Radiation-produced Point Defects to Edge Dislocation

  • S. S. park;K. O. Chang;Park, S. P.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(2)
    • /
    • pp.160-165
    • /
    • 1998
  • Under the heavy irradiation, when the production and the recombination of interstitials and vacancies are included, the diffusion equations become nonlinear. An effort has been made to arrange an appropriated transformation of these nonlinear differential equations to soluble Poisson's equations, so that analytical solutions for simultaneously calculating the concentrations of interstitials and vacancies in the angular dependent Cottrell's potential of the edge dislocation have been derived from the well-known Green's theorem and perturbation theory.

  • PDF

Drift Diffusion of Radiation-produced Point Defects to Edge Dislocation

  • Park, S.S.;Chang, K.O.;Choi, S.P.;Kim, C.O.
    • Nuclear Engineering and Technology
    • /
    • 제31권2호
    • /
    • pp.151-156
    • /
    • 1999
  • Under the heavy irradiation of crystalline materials when the production and the recombination of interstitials and vacancies are included, the diffusion equations become nonlinear. An effort has been made to arrange an appropriate transformation of these nonlinear differential equations to more solvable Poisson's equations, finally analytical solutions for simultaneously calculating the concentrations of interstitials and vacancies in the angular dependent Cottrell's potential of the edge dislocation have been derived from the well-known Green's theorem and perturbation theory.

  • PDF

BOUNDARY VALUE PROBLEMS FOR THE STATIONARY NORDSTRÖM-VLASOV SYSTEM

  • Bostan, Mihai
    • 대한수학회지
    • /
    • 제47권4호
    • /
    • pp.743-766
    • /
    • 2010
  • We study the existence of weak solution for the stationary Nordstr$\ddot{o}$m-Vlasov equations in a bounded domain. The proof follows by fixed point method. The asymptotic behavior for large light speed is analyzed as well. We justify the convergence towards the stationary Vlasov-Poisson model for stellar dynamics.

ANALYSIS OF A FOURTH ORDER SCHEME AND APPLICATION OF LOCAL DEFECT CORRECTION METHOD

  • Abbas, Ali
    • Journal of applied mathematics & informatics
    • /
    • 제32권3_4호
    • /
    • pp.511-527
    • /
    • 2014
  • This paper provides a new application similar to the Local Defect Correction (LDC) technique to solve Poisson problem -u"(x) = f(x) with Dirichlet boundary conditions. The exact solution is supposed to have high activity in some region of the domain. LDC is combined with a fourth order compact scheme which is recently developed in Abbas (Num. Meth. Partial differential equations, 2013). Numerical tests illustrate the interest of this application.

RICCI ρ-SOLITON IN A PERFECT FLUID SPACETIME WITH A GRADIENT VECTOR FIELD

  • Dibakar Dey;Pradip Majhi
    • 대한수학회논문집
    • /
    • 제38권1호
    • /
    • pp.235-242
    • /
    • 2023
  • In this paper, we studied several geometrical aspects of a perfect fluid spacetime admitting a Ricci ρ-soliton and an η-Ricci ρ-soliton. Beside this, we consider the velocity vector of the perfect fluid space time as a gradient vector and obtain some Poisson equations satisfied by the potential function of the gradient solitons.

SIF AND FINITE ELEMENT SOLUTIONS FOR CORNER SINGULARITIES

  • Woo, Gyungsoo;Kim, Seokchan
    • East Asian mathematical journal
    • /
    • 제34권5호
    • /
    • pp.623-632
    • /
    • 2018
  • In [7, 8] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with homogeneous boundary conditions, compute the finite element solutions using standard FEM and use the extraction formula to compute the stress intensity factor(s), then they posed new PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor(s), which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. Their algorithm involves an iteration and the iteration number depends on the acuracy of stress intensity factors, which is usually obtained by extraction formula which use the finite element solutions computed by standard Finite Element Method. In this paper we investigate the dependence of the iteration number on the convergence of stress intensity factors and give a way to reduce the iteration number, together with some numerical experiments.