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ANALYSIS OF A FOURTH ORDER SCHEME AND

APPLICATION OF LOCAL DEFECT CORRECTION METHOD

ALI ABBAS

Abstract. This paper provides a new application similar to the Local

Defect Correction (LDC) technique to solve Poisson problem −u
′′

(x) =
f(x) with Dirichlet boundary conditions. The exact solution is supposed
to have high activity in some region of the domain. LDC is combined with
a fourth order compact scheme which is recently developed in Abbas (Num.
Meth. Partial differential equations, 2013). Numerical tests illustrate the
interest of this application.
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1. Introduction

The Local Defect Correction (LDC) method was introduced by W. Hackbusch
[8] for solving elliptic boundary value problem. LDC is a domain decomposition
technique in which the local domain fully overlaps the global one. It is a generic
iterative algorithm of multiscale type for the resolution of discrete problem.
Two or more grids of calculation can be used. We refer to [6] for applications to
problems in combustion and numerical simulations of the flow and heat transfer
in a glass tank. An analysis of the LDC technique in combination with finite
difference discretizations is presented in [4]. In [7] the method is extended to
include adaptivity, multilevel refinement, domain decomposition and regredding.
The LDC method is combined with finite volume discretizations in [5] and finite
elements discretizations in [1, 2].
Let’s briefly outline the basic version of the LDC technique. Consider the elliptic
boundary value problem

{

Lu = f, in Ω, (a)

u = g, on ∂Ω, (b)
(1)
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where L is a linear elliptic differential operator, f and g are the source term and
Dirichlet boundary condition, respectively. To discretize (1), we first choose a
global coarse grid (grid spacingH), which we denote by ΩH . Let LH be a discrete
operator approximating the continuous operator L. An initial approximation
uH
i , i = 0, on ΩH is obtained by solving the system

LHuH
i = fH . (2)

In (2), the vector fH contains the source term f and the Dirichlet boundary
condition g as well. Suppose that LH is invertible. Moreover, suppose that the
exact solution u(x, y) of (1) has a high activity region in some (small) part of the
domain. We select a subdomain Ωl ⊂ Ω such that the high activity region of u is
contained in Ωl. The subdomain Ωl is discretized by a local fine grid (grid spac-
ing h). We denote it by Ωh

l . The fine grid Ωl
h is built such that ΩH

l ∩ Ωl ⊂ Ωh
l .

This means that the coarse grid points that lie in the region of refinement are
also points of Ωh

l . In order to formulate a discrete problem on Ωh
l , we should

define artificial boundary conditions on Γ, the interface between Ωl and Ω \ Ωl,
(Figure 1). Actually, we use an interpolation operator P h,H to obtain artificial
boundary conditions on Γ. The operator P h,H gives the values of the fine grid
points on Γh by interpolating the values of the coarse grid points on the interface
ΓH .
On ∂Ωl \Γ, we obtain boundary conditions using the Dirichlet boundary condi-
tions g in (1)b. On the fine grid Ωh

l we consider the following discrete problem,

UL UR
b b b b b b b b b b b bb b b b b b b b b

ΩH

Ωh
l

Figure 1. Discretization in one dimension. The big points
represent the coarse grid ΩH , the small points represent the
fine domain Ωh

l .

at iteration i = 0,

Lh
l u

h
l,i = fh

l −Bh
l,Γu

h
l,i|Γ, (3)

where

uh
l,i|Γ = P h,HuH

i |Γ. (4)

In (3), i represents an index of iteration and Bh
l,Γ is a square matrix representing

the dependence of the fine grid solution on the artificial boundary conditions on
Γ. In (3), the matrix Lh

l (assumed to be invertible) is a discrete approximation
of the operator L on the subdomain Ωl. In the right term in (3), fh

l contains the
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source term f and the Dirichlet boundary condition g on ∂Ωl \ Γ given in (1).
Notice that Γ∩∂Ω can be empty as in the figure 1. If we know the values of the
defect dH = LH(u|ΩH )− fH , we can use it to find more accurate approximation
on the coarse grid. This can be obtained by replacing dH in the right hand
side of (2). However, we do not know the exact solution of the exact continuous
problem then we cannot calculate dH . We will use uh

l,0 calculated on the fine grid

to approximate dH . Indeed, for all i, index of iteration, the function wH
i , i = 0,

is the function on the coarse grid defined by:

wH
i (x, y) =

{

uh
l,i(x, y), (x, y) ∈ ΩH

l ,

uH
i (x, y), (x, y) ∈ ΩH \ ΩH

l .
(5)

For each index of iteration i we define dHi by

dHi = LHwH
i − fH . (6)

Actually, dHi provides an estimate of the local discrestization error at all points

x0 xNb b b b b b b b b b b b bb b b b b

ΩH
ǫ

Ωh
l

Figure 2. The small points consist of points of Ωh, the big
ones are the points of the safety region ΩH

ǫ .

of ΩH
l . We observed numerically it is better to use the approximation (6) on a

proper subset of ΩH
l only. In particular, the points of the coarse grid near ∂Ωl

should be excluded. This leads to introduce a “Safety region” denoted by ΩH
ǫ

(Figure 2). The estimation of the local error of discretization of the coarse grid
is placed in the right hand side of the equations corresponding to coarse grid
points belonging to ΩH

ǫ only. Then we apply the correction step on the coarse
grid to find uH

i , i = 1,

LHuH
i =

{

fH(x, y) + dHi−1(x, y), (x, y) ∈ ΩH
ǫ ,

fH(x, y), (x, y) ∈ ΩH \ ΩH
ǫ .

(7)

As (7) contains estimations of the local error of the discretization on the coarse
grid, we expect uH

i+1 to be a more accurate approximation than uH
i . Then we

obtain better boundary conditions on Γ and a solution on the fine local grid
by (3) with i = 1. By performing the iterations on the index i, we obtain the
following algorithm:
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Algorithm 1.1. • Initialization
-Solve the problem(2) on the coarse grid ΩH with i = 0.We obtain the vector uH

0 .

-Solve the problem(3) on the fine local grid Ω
h

l
with i = 0.We obtain the vector uh

l,0
.

• Iteration i = 1, 2...
- Compute WH

i−1 by (5).

- Compute dHi−1 by (6).

- Re-solve the problem (7) on the coarse grid ΩH . We obtain the vector uH
i .

- Solve the problem (3) on the local fine grid Ωh
l . We obtain the vector uh

l,i.

In practice, one iteration is enough to obtain a satisafactory approximation
on the composite grid ΩH,h which is the grid formed by the union of the coarse
grid and the fine grid, ΩH,h = ΩH ∪ Ωh

l . The algorithm 1.1 is an elementary
version of the LDC method. Several generalizations are possible:
• Use of several fine grids. Notice that the local problems are independent each
other and can be solved simultaneously. Recursive refinement where a local fine
grid can be a coarse grid for another local fine grid.
• Use of different discretizations. We refer to [6] for a detailed analysis of the
behavior of the convergence for the Poisson problem solved with classic five
points finite difference scheme.

2. Main results

2.1. Analysis of a fourth order scheme. We recall and analyse a new
scheme called hermitian Box-scheme (HB-scheme), for the Poisson problem in
one dimension based on the previous work [12]. This scheme appears to be fourth
order accurate in practice. It has been successfully extended to two dimensions
in [9] and three dimensions in [10]. Let’s recall the principle of this scheme.
Consider the one-dimensional Poisson problem on the interval Ω = (a, b) with
length L = b− a,

{

− u′′(x) = f(x), a < x < b,

u(a) = ga, u(b) = gb.
(8)

Equation (8) is recast in mixed form:










v′(x) + f(x) = 0, (a)

v(x) − u′(x) = 0, (b)

u(a) = ga, u(b) = gb. (c)

(9)

We lay out on Ω a regular grid xj = a+jh, 0 ≤ j ≤ N with stepsize h = L/N ,
(Figure 3). The unknowns are denoted by uj ≈ u(xj) and ux,j ≈ u′(xj). The
vectors U,Ux ∈ R

N−1 stand for the unknowns at internal points,

U = [u1, u2, ..., uN−1]
T ; Ux = [ux,1, ..., ux,N−1]

T . (10)

In analogy to the original box-scheme [13], the HB-scheme is deduced from the
integration of the two equations (9)a,b on a box Kj =]xj−1, xj+1[ of length 2h.
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b bb bbc bc

h

x0 x1 x2 · · · · · · xN−2 xN−1 xN

Figure 3. Grid in dimension 1. The two boundary points
x0, xN (denoted by “◦”). The points xi, i = 1, · · · , N − 1
are the interior points (denoted by “•”).

Suppose given the averaged values of the source term f(x) on the box Kj,

Π0fj =
1

2h

∫

Kj

f(x)dx, 1 ≤ j ≤ N − 1. (11)

In practice, (11) can be approximated using Simpson formula

Π0fj ≈
1

6
fj−1 +

2

3
fj +

1

6
fj+1, 1 ≤ j ≤ N − 1. (12)

The conservation equation (9)a becomes

−
ux,j+1 − ux,j−1

2h
= Π0fj , 1 ≤ j ≤ N − 1. (13)

Second, the equation (9)b is integrated on the box Kj . This yields

1

2h

∫ xj+1

xj−1

v(x)dx =
u(xj+1)− u(xj−1)

2h
, 1 ≤ j ≤ N − 1. (14)

Approximating the integral in the left-hand side of (14) by Simpson formula
suggests the following fourth-order hermitian approximation

1

6
ux,j−1 +

2

3
ux,j +

1

6
ux,j+1 =

uj+1 − uj−1

2h
, 1 ≤ j ≤ N − 1. (15)

Equations (15) require approximations of the derivatives on the boundaries.
Here, we consider the following third-order approximations















1

3
ux,0 +

2

3
ux,1 =

1

h

(

1

6
u2 +

2

3
u1 −

5

6
u0

)

,

1

3
ux,N +

2

3
ux,N−1 =

1

h

(

5

6
uN −

2

3
uN−1 −

1

6
uN−2

)

.

(16)

Relations (16) are obtained using Taylor expansions. In summary, the equations
(13), (15), (16) with Dirichlet boundary conditions translate to the following
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HB-scheme: Find u = (ui)0≤i≤N and v = (vi)0≤i≤N solution of:



























































−
ux,j+1 − ux,j−1

2h
= Π0fj , 1 ≤ j ≤ N − 1,

1

3
ux,0 +

2

3
ux,1 =

1

h

(

1

6
u2 +

2

3
u1 −

5

6
u0

)

,

1

6
ux,j−1 +

2

3
ux,j +

1

6
ux,j+1 =

uj+1 − uj−1

2h
, 1 ≤ j ≤ N − 1,

1

3
ux,N +

2

3
ux,N−1 =

1

h

(

5

6
uN −

2

3
uN−1 −

1

6
uN−2

)

,

u0 = ga, uN = gb.

(17)

This HB-scheme is found numerically to be fourth order accurate as it is shown
in the numerical tables.

Lemma 2.1. Suppose that Π0fj is approximated by Simpson formula:

Π0fj ≈ σxfj =
1

6
fj−1 +

2

3
fj +

1

6
fj+1, 1 ≤ j ≤ N − 1. (18)

and (uj)j∈Z, (ux,j)j∈Z are two sequences verifying











−
ux,j+1 − ux,j−1

2h
= σxfj, j ∈ Z, (a)

σxux,j =
uj+1 − uj−1

2h
, j ∈ Z. (b)

(19)

Then (uj)j∈Z verifies

−
uj+2 + uj−2 − 2uj

4h2
=

1

36
fj−2 +

2

9
fj−1 +

1

2
fj +

2

9
fj+1 +

1

36
fj+2. (20)

Proof. Denote by Ej , j ∈ Z, the j-th equation of (19)a. Using the sum

1

6
Ej−1 +

2

3
Ej +

1

6
Ej+1 =

1

6
σxfj−1 +

2

3
σxfj +

1

6
σxfj+1, (21)

and (19)b, we find that the left term of (21) verifies











1

6
Ej−1 +

2

3
Ej +

1

6
Ej+1 = −

1

6
δxux,j−1 −

2

3
δxux,j −

1

6
δxux,j+1

= −
uj+2 + uj−2 − 2uj

4h2
.

(22)
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The right term of (21) verifies


















































1

6
σxfj−1 +

2

3
σxfj +

1

6
σxfj+1 =

1

6

(

1

6
fj−2 +

2

3
fj−1 +

1

6
fj

)

+
2

3

(

1

6
fj−1 +

2

3
fj +

1

6
fj+1

)

+
1

6

(

1

6
fj +

2

3
fj+1 +

1

6
fj+2

)

=
1

36
fj−2 +

2

9
fj−1 +

1

2
fj +

2

9
fj+1 +

1

36
fj+2,

where the equality (20) for j ∈ Z. �

We refer to [11] for a detailed proof of the following lemma concerning the
maximum principles of the standard three point Laplacian scheme.

Lemma 2.2. Let u = (ui)0≤i≤N . Suppose that −δ2xui ≤ 0, 1 ≤ i ≤ N − 1, then

max
1≤i≤N−1

ui ≤ max(u0, uN) (Maximumprinciple). (23)

Similarly, if −δ2xui ≥ 0, 1 ≤ i ≤ N − 1, then

min
1≤i≤N−1

ui ≥ min(u0, uN) (Minimumprinciple). (24)

The scheme (17) verifies the following discrete maximum and minimum prin-
ciples.

Proposition 2.1 (Principles of maximum and minimum). Let u = (ui)0≤i≤N

be the solution of HB-scheme (17). Suppose that fi ≤ 0, ∀ 1 ≤ i ≤ N − 1, then

max
1≤i≤N−1

ui ≤ max{u0, uN} (Maximum principle). (25)

Similarly, if fi ≥ 0, ∀ 1 ≤ i ≤ N − 1, u verifies

min
1≤i≤N−1

ui ≥ min{u0, uN} (Minimum principle). (26)

This means that u attains its maxima and minima on the boundary points x0

and xN .

Proof. Suppose that fi ≤ 0, ∀ 1 ≤ i ≤ N − 1 then

Π0fi ≤ 0, 1 ≤ i ≤ N − 1. (27)

By (20),

−
ui+2 + ui−2 − 2ui

4h2
≤ 0, ∀ 2 ≤ i ≤ N − 2. (28)

If N is even, using the maximum principle of Lemma 2.2 we obtain










max
1≤k≤N−2

2

u2k ≤ max{u0, uN},

max
1≤k≤N−2

2

u2k+1 ≤ max{u1, uN−1}.
(29)
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In the same manner if N is odd, we obtain










max
1≤k≤N−1

2

u2k ≤ max{u0, uN−1},

max
1≤k≤N−1

2

u2k+1 ≤ max{u1, uN}.
(30)

It results for all N ,

max
2≤i≤N−2

ui ≤ max{u0, u1, uN−1, uN}. (31)

Then to prove (25) it is enough to prove that

max{u1, uN−1} ≤ max{u0, uN}. (32)

Suppose that
max{u1, uN−1} = u1. (33)

We have
−δxux,j = Π0fj ≤ 0, ∀1 ≤ j ≤ N − 1. (34)

This gives ux,0 ≤ ux,2 and ux,1 ≤ ux,3. The HB-scheme (17) verifies










1

3
ux,0 +

2

3
ux,1 =

2

3

u1 − u0

h
+

1

3

u2 − u0

2h
,

1

6
ux,0 +

2

3
ux,1 +

1

6
ux,2 =

u2 − u0

2h
.

(35)

Moreover,

1

3
ux,0 +

2

3
ux,1 ≤

1

6
ux,0 +

2

3
ux,1 +

1

6
ux,2 ≤

u2 − u0

2h
.

Therefore,

2

3

u1 − u0

h
+

1

3

u2 − u0

2h
≤

u2 − u0

2h
.

But we have u2 ≤ u0, then

2

3

u1 − u0

h
≤

2

3

u2 − u0

2h
≤ 0, (36)

therefore
u1 ≤ u0, (37)

where (32). Suppose that

max{u1, uN−1} = uN−1. (38)

The equations (17) give










1

3
ux,N +

2

3
ux,N−1 =

2

3

uN − uN−1

h
+

1

3

uN − uN−2

2h
,

1

6
ux,N−2 +

2

3
ux,N−1 +

1

6
ux,N =

uN − uN−2

2h
.

(39)

In addition, using (34), ux,N−2 ≤ ux,N , therefore

1

3
ux,N +

2

3
ux,N−1 ≥

1

6
ux,N−2 +

2

3
ux,N−1 +

1

6
ux,N =

uN − uN−2

2h
, (40)
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as uN−1 ≥ uN−3, and uN ≥ uN−2, we get

2

3

uN − uN−1

h
≥

2

3

uN − uN−2

2h
≥ 0, (41)

We deduce
uN−1 ≤ uN , (42)

where
max{u1, uN−1} ≤ max{u0, uN}. (43)

Finally,
max

1≤i≤N−1
ui ≤ max{u0, uN}, (44)

where (25). In the same manner we can prove the minimum principle (26). �

Corollary 2.1 (existence and uniqueness of solution). The HB-scheme (17) has

unique solution (u, v) ∈ l2h,0 × l2h.

Proof. We have (17) a linear system with 2N equations and 2N unknowns.
To prove the existence and uniqueness of the solution, it is enough to prove
that Π0fi = 0, 1 ≤ i ≤ N − 1, implies u = v = 0. Let u = (ui)0≤i≤N and
v = (vi)0≤i≤N such that











































−δxvj = 0, 1 ≤ j ≤ N − 1, (a)

1

3
vN +

1

3
vN−1 =

2

3

uN − uN−1

h
+

1

3

uN − uN−2

2h
, j = N, (b)

1

6
vj−1 +

2

3
vj +

1

6
vj+1 =

uj+1 − uj−1

2h
, 1 ≤ j ≤ N − 1, (c)

1

3
v0 +

2

3
v1 =

2

3

u1 − u0

h
+

1

3

u2 − u0

2h
, j = 0, (d)

u0 = 0, uN = 0. (e)

(45)

Using the discrete maximum principle of proposition 2.1, we obtain

max
1≤i≤N−1

ui ≤ max{u0, uN}, (46)

then
ui = 0, ∀1 ≤ i ≤ N − 1, (47)

which proves that the matrix associated to the HB-scheme (17) has nul kernel.
As it is square matrix then it is invertible, where the existence and uniqueness
of the solution of HB-scheme. �

2.2. Matrix form of hermitian Box-scheme. We summarize the finite-
difference and matrix notations used in the sequel.
• The tridiagonal matrix T ∈ MN−1(R) is

T =















2 −1 0 . . . 0
−1 2 −1 . . . 0
...

...
... . . .

...
0 . . . −1 2 −1
0 . . . 0 −1 2















. (48)
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• The Simpson matrix Ps ∈ MN−1(R) is

Ps = I − T/6, (49)

where I is the identity matrix of order N − 1.
• The antisymmetric matrix K ∈ MN−1(R) given by

K =















0 1 0 . . . 0
−1 0 1 . . . 0
...

...
... . . .

...
0 . . . −1 0 1
0 . . . 0 −1 0















. (50)

• Denoting (ei)1≤i≤N−1 the canonical basis of R
N−1, the matrices F1, F2 ∈

MN−1(R) are defined by
{

F1 = e1e
T
1 + eN−1e

T
N−1, (a)

F2 = −e1e
T
1 + eN−1e

T
N−1. (b)

(51)

Let us turn now to the matrix form of the scheme. We use the notation UL =
u0, UR = uN , Ux,L = ux,0, Ux,R = ux,N for the boundary values.

Proposition 2.2. For all linear approximation of the derivatives on the bound-

ary Ux,L, Ux,R in terms of U, Ux and the values on the boundary UL, UR, there

exist matrices A, B, C ∈ MN−1(R) such that

e1Ux,L + eN−1Ux,R =
1

h
AU − BUx +

1

h
C(e1UL + eN−1UR). (52)

Proof. Any linear approximation of ux,0 in terms of u = (ui)0≤i≤N , ux =
(ux,i)0≤i≤N and u0, uN can be written in general form as:

ux,0 =

i=N−1
∑

i=1

α0
iui +

N−1
∑

j=1

β0
jux,j + γ0

0u0 + γ0
NuN , (53)

with α0
i , β

0
j , γ

0
0 , γ

0
N ∈ R.

Similarly,

ux,N =

N−1
∑

i=1

αN
i ui +

N−1
∑

j=1

βN
j ux,j + γN

0 u0 + γN
N uN , (54)

with αN
i , βN

j , γN
0 , γN

N ∈ R. Multiplying (53) by e1 and (54) by eN−1 we get


























e1ux,0 =

N−1
∑

i=1

α
0
i e1ui +

N−1
∑

j=1

β
0
j e1ux,j + γ

0
0e1u0 + γ

0
Ne1uN ,

eN−1ux,N =
N−1
∑

i=1

α
N
i eN−1ui +

N−1
∑

j=1

β
N
j eN−1ux,j + γ

N
0 eN−1u0 + γ

N
N eN−1uN .

(55)
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Adding the equations (55) together














e1Ux,L + eN−1Ux,R =

N−1
∑

i=1

(α0
i e1 + α

N
i eN−1)Ui +

N−1
∑

j=1

(β0
j e1 + β

N
j eN−1)Ux,j

+ (γ0
0e1 + γ

N
0 eN−1)UL + (γ0

Ne1 + γ
N
N eN−1)UR.

(56)

Using the fact that Ui = eTi U, Ux,j = eTj Ux, UL = eT1 e1UL, and UR =

eTN−1eN−1UR, we can write (56) as



















































e1Ux,L + eN−1Ux,R =

N−1
∑

i=1

(α0
i e1e

T
i + αN

i eN−1e
T
i )U

+

N−1
∑

j=1

(β0
j e1e

T
j + βN

j eN−1e
T
j )Ux

+ (γ0
0e1e

T
1 + γN

0 eN−1e
T
1 )e1UL

+ (γ0
Ne1e

T
N−1 + γN

N eN−1e
T
N−1)eN−1UR.

(57)

Finally to complete the proof, let A, B, C ∈ MN−1(R) be the matrices






































A = h

N−1
∑

i=1

(α0
i e1e

T
i + αN

i eN−1e
T
i ),

B =

N−1
∑

j=1

(β0
j e1e

T
j + βN

j eN−1e
T
j ),

C = h(γ0
0e1e

T
1 + γN

0 eN−1e
T
1 + γ0

Ne1e
T
N−1 + γN

N eN−1e
T
N−1).

(58)

�

We claim that (16) translates into matrix form as [9]

e1Ux,L + eN−1Ux,R =
1

h

(

AU − hBUx + C
(

e1UL + eN−1UR

)

)

, (59)

where the matrices A, B, C are given by















A = −2F2 +
1

2
(e1e

T
2 − eN−1e

T
N−2), (a)

B = 2F1, (b)

C =
5

2
F2, (c)

(60)

and the vector of derivative is given in terms of U and the boundary conditions
by

Ux =
1

h
DU +

1

h
E(e1UL + eN−1UR), (61)
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where the matrices D and E are










D =
1

2
(Ps −

1

6
B)−1(K −

1

3
A),

E =
1

2
(Ps −

1

6
B)−1(F2 −

1

3
C).

(62)

Using (59) and (61), Ux can be eliminated which gives the expression of the
HB-scheme in the sole unknown U as

1

h2
HU = F −

1

h2
G
(

e1UL + eN−1UR

)

, (63)

where F = [Π0f1, · · · ,Π
0fN−1]

T ( Π0fj is given in (11)). The matrices H,G ∈
MN−1(R) are











H = −
1

4
(K − F2B)(Ps −

1

6
B)−1(K −

1

3
A)−

1

2
F2A, (a)

G = −
1

4
(K − F2B)(Ps −

1

6
B)−1(F2 −

1

3
C)−

1

2
F2C. (b)

(64)

If needed, the gradient is recovered as a postprocessing by (61).

2.3. Two-grid refinement algorithm. Here, a multiscale technique is com-
bined with the hermitian Box-scheme. We consider the problem

{

−u′′(x) = f(x), x ∈ Ω = (a, b),
u(a) = ga, u(b) = gb.

(65)

The domain Ω is discretized with stepsize H = 1/N such that the discrete coarse
points are xH

i = a + iH, 0 ≤ i ≤ N . The coarse grid is ΩH . The unknowns
vectors are UH and UH

x ∈ R
(N−1) such that UH

i ≈ u(xH
i ) and UH

x,i ≈ u′(xH
i ).

To avoid any confusion between variables, we perform a change of notations for
the sequel

{

H = hc, (Coarse grid size)
h = hf . (Fine grid size)

(66)

The hermitian Box-scheme corresponding to the problem (65) has the following
matrix form

1

h2
c

HUhc

i = F −
1

h2
c

G(e1ga + eN−1gb), (67)

with F = [Π0f1,Π
0f2, ...,Π

0fN−1]
T . By comparing with (2), let















Lhc =
1

h2
c

H,

fhc = F −
1

h2
c

G(e1ga + eN−1gb).
(68)

By resolving (67) we obtain the solution vector Uhc

i , i = 0, on Ωhc and the

global vector solution ˜Uhc

i ∈ R
(N+1)

˜Uhc

i = [ga, U
hc

i,1 , U
hc

i,2 , ..., U
hc

i,N−1, gb]
T . (69)
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The domain Ωl has been choosen such that Ωl = (a1, b1), with a1, b1 two fixed
scalars between a and b, a ≤ a1 < b1 ≤ b. The choice of a1 and b1 is adapted
such that for all N there exist i0 and j0 between 1 and N − 1 such that

a1 = xhc(i0), b1 = xhc(j0), (70)

that is to say a1 and b1 are two points of the coarse grid Ωhc . In order that Ωh
l has

the same number of points as ΩH , we choose a1 and b1 such that b1−a1 =
b− a

2
.

Suppose that we know the values ga1 = u(a1) and gb1 = u(b1) where u(x) is the
exact solution. Hence, on the domain Ωl we can write

{

−u′′
l = fl, in Ωl,

ul(a1) = ga1
, ul(b1) = gb1 ,

(71)

with ul = u|Ωl
and fl = f |Ωl

. The domain Ωl is discretized with stepsize hf =
hc

2
such that the discrete fine points are x

hf

i , x
hf

i = a1 + ihf , 0 ≤ i ≤ Nf , with

Nf =
b1 − a1

hf

. Notice the equality between N and Nf when b1 − a1 =
b− a

2
.

The fine grid is Ω
hf

l . The unknown vectors are U
hf

l and U
hf

l,x ∈ R
(N−1) such

that U
hf

l,i ≈ ul(x
hf

i ) and U
hf

l,x,i ≈ u′
l(x

hf

i ), 1 ≤ i ≤ N − 1. The interface between

Ωl and Ω is ∂Ωl = {a1, b1}. Based on the matrix form (63), the hermtian
Box-scheme corresponding to (71) is

1

h2
f

HU
hf

i = Fl −
1

h2
f

G(e1ga1
+ eN−1gb1), (72)

with Fl = [Π0f1,Π
0f2, ...,Π

0fN−1]
T ∈ R

N−1. The problem is that we do not
know the values ga1

and gb1 on ∂Ωl in (71). To approach these values, we replace
it by artificial boundary conditions

{

ga1
≈ ˜Uhc

0,i0
,

gb1 ≈ ˜Uhc

0,j0
,

(73)

with i0 and j0 are the indices of the points a1 and b1 in the coarse grid defined in
(70). Here, in particular, the artificial boundary ∂Ωl = {a1, b1} is composed of
two points of the coarse grid Ωhc then there is no need to interpolate therefore
the matrix Bhc

l,Γ is zero. By comparing (72) and (3), let














L
hf

l =
1

h2
f

H,

f
hf

l = Fl −
1

h2
f

G(e1 ˜U
hc

i0
+ eN−1

˜Uhc

j0
).

(74)

By solving (72) with i = 0 we get

1

h2
f

HU
hf

l,i = Fl −
1

h2
f

G(e1 ˜U
hc

i,i0
+ eN−1

˜Uhc

i,j0
), (75)
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then we obtain the approximation U
h
f

l,0
.

Following (5) the vector Whc

i = (Whc

i,j )1≤j≤N−1 verifies

Whc

i =

{

Uhc

l,i , in Ωhc

l ,

Uhc

i , in Ωhc \ Ωhc

l .
(76)

The defect vector dhc

i ∈ R
(N−1) is calculated by

dhc

i =
1

h2
c

HWhc

i − fhc . (77)

Finally, the algorithm is the following:

Algorithm 2.1. •Initialization
- Solve the problem (67) on the coarse grid Ωhc . The vector solution is denoted

by Uhc

0 ∈ R
(N−1).

- Solve the problem (75) on the local grid Ω
hf

l . The vector solution is denoted

by U
hf

l,0 ∈ R
(N−1).

• Iteration i = 1, 2, ...
- Compute the vector Whc

i−1 by (76).

- Compute the defect vector dhc

i−1 by (77).

- Solve on the coarse grid

1

h2
c

H(Uhc

i )j =

{

fhc

j + dhc

i−1,j , xhc

j ∈ Ωhc

ǫ ,

fhc

j , xhc

j ∈ Ωhc \Ωhc

ǫ ,
(78)

with ǫ > 0. The solution vector is denoted by Uhc

i ∈ R
(N−1).

- Solve the problem (75) on the fine grid. The vector solution is denoted by

U
hf

l,i ∈ R
(N−1).

2.4. Numerical results. In this part, we display some numerical results prov-
ing the interest of the technique presented in the last section. The calculation
is performed using Matlab. The CPU time is calculated by the functions tic

and toc. Notice that the CPU time can be extremely reduced using FFT or
another programming language [3]. The algorithm used so far is the algorithm
2.1 after only one iteration. We intend to study in another paper the behavior
of the convergence of this algorithm. In the numerical tables, uex, ux,ex are the
exact solution and derivative, u, ux are the computed solution and derivative on

the uniform grid and uhf ,hc , u
hf ,hc

x are the computed solution and derivative on
the composite domain. We use the discrete norm L∞ to estimate the error:

‖uex − u‖∞ = max
i=1,..,N−1

|uex(xi)− ui|. (79)

The convergence rate is calculated using the formula

Conv. rate = log2(eN/2/eN), (80)

where eN is the error obtained on a mesh of size N .
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Table 1. Error and convergence rate for Test 1 on uniform grid

hf ‖uex − u‖∞ ‖ux,ex − ux‖∞ Grid points Time(s.)
1/128 1.289(−4) 3.778(−3) 128 0.02
Conv. rate 4.00 4.00
1/256 7.832(−6) 2.391(−4) 256 0.07
Conv. rate 4.00 4.00
1/512 4.861(−7) 1.482(−5) 512 0.50
Conv. rate 4.00 4.00
1/1024 3.033(−8) 9.246(−7) 1024 8.11
Conv. rate 4.00 4.00
1/2048 1.887(−9) 5.775(−8) 2048 48.21

Table 2. Error and convergence rate for Test 1 on composite grid

hc ‖uex − uhf ,hc‖∞ ‖ux,ex − u
hf ,hc

x ‖∞ Grid points Time(s.)
1/64 1.289(−4) 3.778(−3) 96 0.01
1/128 7.832(−6) 2.391(−4) 192 0.02
1/256 4.861(−7) 1.482(−5) 384 0.07
1/512 3.033(−8) 9.246(−7) 768 2.35
1/1024 1.887(−9) 5.775(−8) 1536 26.11

Test 1: We consider the Gaussian function uex(x) = exp(−500(x− 1
2
)2). This

function has a high activity region around x = 1
2
. The results obtained on the

composite grid are compared with those computed by the HB-scheme on the
uniform grid with fine stepsize hf . Observe in tables 1 and 2 the same accuracy
obtained by the two approaches with less points on the composite grid.

Test 2: Suppose that the exact solution is uex(x) =
1

2
[tanh 50((x−

1

2
)) + 1]

on Ω = (0, 1). This function has a deep gradient around x =
1

2
. We choose

Ωl = (
1

4
,
3

4
) and Ωǫ = (

1

4
+ ǫ,

3

4
− ǫ) with ǫ =

1

12
. The numerical results are

given in tables 3 and 4.

3. Conclusion

This paper provides a new application of the multiscale technique combined
with a new high order scheme called HB-scheme. The high order accuracy of
this scheme is particularly interesting in applications where physical fields have
to be calculated as an outcome of a potential solution of a Poisson problem
(electromagnetism, gravitation). The main features of this work are the high
order of precision on the boundaries and the calculation of the derivatives. This
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Table 3. Error and convergence rate for Test 2 on uniform grid

hf ‖uex − u‖∞ ‖ux,ex − ux‖∞ Grid points Time(s.)
1/256 3.481(−5) 3.500(−3) 256 0.08
Conv. rate 4.02 4.08
1/512 2.082(−6) 2.061(−4) 512 0.59
Conv. rate 4.01 4.02
1/1024 1.291(−7) 1.269(−5) 1024 8.19
Conv. rate 4.00 4.00
1/2048 8.062(−9) 7.904(−7) 2048 48.01

Table 4. Error and convergence rate of Test 2 on composite grid

hc ‖uex − uhf ,hc‖∞ ‖ux,ex − u
hf ,hx

x ‖∞ Grid points Time(s.)
1/128 3.481(−5) 3.500(−3) 192 0.02
1/256 2.082(−6) 2.061(−4) 384 0.07
1/512 1.291(−7) 1.269(−5) 768 2.16
1/1024 8.062(−9) 7.904(−7) 1536 25.49

application illustrates the gain in memory and CPU time using this technique
as it is shown in the numerical tables. For instance, we have obtained for Test
1 the same precision using 3072 points instead of 4096. This gain is expected to
be more interesting in higher dimensions. A generalization of this application
to higher dimensions using cubic spline interpolations, based on the previous
results in [9, 10] will be a part of future work.
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