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THE p-LAPLACIAN OPERATORS WITH

POTENTIAL TERMS

Soon-Yeong Chung and Heesoo Lee

Abstract. In this paper, we deal with the discrete p-Laplacian opera-
tors with a potential term having the smallest nonnegative eigenvalue.
Such operators are classified as its smallest eigenvalue is positive or zero.

We discuss differences between them such as an existence of solutions
of p-Laplacian equations on networks and properties of the energy func-
tional. Also, we give some examples of Poisson equations which suggest

a difference between linear types and nonlinear types. Finally, we study
characteristics of the set of a potential those involving operator has the
smallest positive eigenvalue.

1. Introduction

Networks are good abstracts of various structures such as nervous systems,
molecules, economies, webs and so forth. Many phenomena on networks are
represented by equations involving an operator, called the discrete Laplacian
∆ω which is interpreted as a diffusion equation on a network. By the reason,
the discrete Laplacian on a network has been studied by a lot of authors over
recent years [1, 3, 4, 5, 6, 7].

In [4, 5, 6, 7], Morrow and his collaborators have studied forward prob-
lems and inverse conductivity problems involving a discrete Laplacian on a
network. Networks they dealt with are electric networks such as lattice and
circular forms. Also, they have established useful algorithms for identifying
conductivity of edges in the given network.

In [1], Chung and Berenstein introduced another approach, partial differen-
tial equations on networks, of studying problems for discrete Laplacian equa-
tions on a network. They adapted discrete analogues of some notions on vector
calculus such as an integration, a directional derivative, a gradient and a Lapla-
cian. They proved some fundamental properties for a discrete Laplacian, for
example, Green’s theorem, maximum principle and Dirichlet’s principle. They
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also studied the solvability of forward problems, such as Dirichlet and Neumann
boundary value problems, and the global uniqueness of inverse problems.

However, most phenomena on a networks are not expressed by mathematical
equations by linear operators on networks. For this reason, many researchers
have considered various nonlinear operators. In [2], Chung and Kim introduced
a nonlinear operator, the discrete p-Laplacian ∆p,ω on a network which is a
nonlinear generalization of a discrete Laplacian, and the typical eigenvalue
problem for the operator. They discussed the existence of a solution of the
Poisson equation, Dirichlet and Neumann boundary value problems for the
equation

∆p,ωu = f

on a network.
In [8], Chung, Kim and Park introduced a more general operator, the discrete

p-Laplacian LV
p with potential term V on a network and the typical eigenvalue

problem for the operator. They discussed the existence and uniqueness of
solution of the Poisson equation

−∆p,ωu+ V |u|p−2u = f

on a network when the smallest eigenvalue of the operator is positive.
In this paper, we consider the discrete p-Laplacian LV

p with potential term V
on a network by its smallest eigenvalue and study properties of the opator such
as the solvability of homogeneous equations and Poisson equations, relations
between the potential term and the energy functional and so forth.

This paper is organized as follows:

In Section 1, we study vector calculus on networks and recall useful results
in [8]. In Section 2, we classify the p-Laplacian operator with a potential on
a network whose smallest eigenvalue is nonnegative into two cases and dis-
cuss properties of operators in each cases. In [8], Park and Chung verified an
existence of Possion equations

−∆p,ωu+ V |u|p−2u = f

on G under the condition the smallest eigenvalue is just positive. We give some
examples, Poisson equations when the smallest eigenvalue is zero. Since p-
Laplacian operator is nonlinear if p ̸= 2, we have a difference between linear and
nonlinear elliptic equations. Further, we study a relation between eigenpairs
and potentials under a monotone condition on potentials. Finally, in Section 3,
we discuss characteristics of the set A0 of potentials whose involving operator’s
smallest eigenvalue is positive. The set is open, unbounded and strictly convex.
Also, we study a behavior of a potential term V on a straight line where V ∈ A0

or V ∈ ∂A0. When V ∈ ∂A0, the smallest eigenvalue of LV
p varies positively

or negatively. We get an equivalence condition of the tangent of the line such
that the smallest eigenvalue of LV

p varies positively.
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2. Preliminaries

In this section, we start with graph theoretic notions frequently used throu-
ghout this paper.

A graph G = G(V,E) consists of a finite set V (G) (or simply V ) of vertices
and a subset E(G) (or simply E) of V × V whose elements are called edges.
By {x, y} ∈ E or x ∼ y, we mean that two vertices x and y are joined by
an edge. A graph G is said to be simple if it has neither multiple edges nor
loops. Also, we say that a graph G is connected if for every pair of verices x
and y, there is a finite sequence {xj}nj=0(termed a path) of vertices such that
x = x0 ∼ x1 ∼ · · · ∼ xn = y.

A weight on a graph G(V,E) is a function ω : V × V → [0,∞) satisfying

(i) ω(x, y) = ω(y, x), x, y ∈ V
(ii) ω(x, y) = 0 if and only if {x, y} /∈ E.

In particular, a weight ω satisfying

ω(x, y) = 1 if x ∼ y

is called the standard weight. A graph G associated with a weight ω is said to
be a weighted graph or a network, denoted by (G,ω) (or simply G). The degree
of a vertex x, denoted by dωx, is defined by

dωx :=
∑
y∈G

ω(x, y).

From now on, all graphs of given networks in this paper are assumed to be
simple and connected.

Throughout this paper, a function on a network is a understood as a function
defined just on the set of vertices of the graph. Conventionally used, we denote
by x ∈ V or x ∈ G the fact that x is a vertex in G.

Let G=(G, ω) be a network and f : G → R a function. The integration of
f is defined by ∫

G

fdωx (or

∫
G

f) :=
∑
x∈G

f(x)dωx.

For 1 < p < ∞, the p-directional derivative of f to the direction y ∈ G is
defined by

Dp,ω,yf(x) := |f(y)− f(x)|p−2(f(y)− f(x))

√
ω(x, y)

dωx

for x ∈ G. The p-gradient of f is defined by

∇p,ωf(x) := (Dp,ω,yf(x))y∈G

for x ∈ G. Also, the p-Laplacian of f is defined by

∆p,ωf(x) :=
∑
y∈G

|f(y)− f(x)|p−2(f(y)− f(x))
ω(x, y)

dωx
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for all x ∈ G. In the case p = 2, we write simply Dω,y, ∇ω and ∆ω instead of
D2,ω,y, ∇2,ω and ∆2,ω, respectively. It is easy to see that these are nonlinear
except for p = 2.

The next theorem is proved in the paper [2] by Chung and Kim.

Theorem 2.1. Let G=(G, ω) be a network. Then for any pair of functions
f : G→ R and h : G→ R, we have∫

G

f(−∆p,ωh) =
1

2

∫
G

∇ωf · ∇p,ωh.

Let V : G → R be a function. The p-Laplacian operator LV
p with potential

V is defined by

LV
p u := −∆p,ωu+ V |u|p−2u

on G for all u : G → R. Also we define the corresponding energy functional
QV by

QV (u) :=

∫
G

uLV
p u

for all u : G→ R. By the above theorem, we have

QV (u) =
1

2

∫
G

∇ωu · ∇p,ωu+

∫
G

V |u|p

=
1

2

∑
x,y∈G

|u(y)− u(x)|pω(x, y) +
∑
x∈G

V (x)|u(x)|pdωx

for all u : G→ R.
On both continuous media and discrete media [2, 8], there has been a lot of

discussions on solvability of Poisson equations of the form

LV
p u = −∆p,ωu+ V |u|p−2u = f

on G. Among those results, Chung, Kim and Park provided many useful prop-
erties of the eigenvalue problem of the form

(1) LV
p u = −∆p,ωu+ V |u|p−2u = λ|u|p−2u

on G for some λ ∈ R.

Theorem 2.2 ([8]). Let G=(G, ω) be a network. For any function V : G→ R,
there is a non-zero solution ϕ : G→ R to the eigenvalue problem

−∆p,ωϕ+ V |ϕ|p−2ϕ = λ|ϕ|p−2ϕ

on G for some λ ∈ R.

Theorem 2.3 ([8]). Let G=(G, ω) be a network. For any function V : G→ R,
and λ0 be defined by

λ0 := inf
u̸≡0

QV (u)∫
G
|u|p

.
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Then there is a nonzero function ϕ0 : G→ R such that QV (ϕ0)∫
G

|ϕ0|p = λ0. Further,

the function ϕ0 is a solution of the eigenvalue problem

−∆p,ω + V |u|p−2u = λ0|u|p−2u.

Also they proved the following theorem which guarantees the solvability of
the Poisson equation and the uniqueness of the solution.

Theorem 2.4 ([8]). Let G=(G, ω) be a network and V : G → R a function.
The following are equivalent.

i) λ0 > 0.
ii) If a function f : G → R is nonnegative, then there is a unique solution

u0 satisfying
−∆p,ωu+ V |u|p−2u = f

on G.
Moreover, u0 is nonnegative.

3. Classification by the smallest eigenvalues

In this section, we study a p-Laplacian equation

LV
p u = −∆p, ωu+ V |u|p−2u = 0

on a network G=(G, ω) which operator LV
p has the smallest nonnegative eigen-

value. For a function V : G → R, we define the smallest eigenvalue of the
operator LV

p by

λ0(V ) = λ0 := inf
u̸≡0

QV (u)∫
G
|u|p

.

By the definition, QV (u)∫
G

|u|p ≥ λ0 for all nonzero u : G → R and hence QV (u)

is nonnegative for all nonzero u whenever λ0 ≥ 0. We say that QV is strictly
positive ifQV (u) > 0 for all u ̸≡ 0 and degenerately positive ifQV is nonnegative
and QV (u0) = 0 for some u0 ̸≡ 0. QV is said nonpositive otherwise. Clearly,
QV (0) = 0 for any function V : G → R. By the reason, QV is either strictly
positive or degenerately positive whenever QV is nonnegative. The following
two theorems deal with relations betweenQV and the solvability of the equation
of the form

(2) LV
p u = −∆p,ωu+ V |u|p−2u = 0

on G.

Theorem 3.1. Let G=(G, ω) be a network. For any function V : G → R
satisfying that QV is nonnegative, the following are equivalent.

i) QV is degenerately positive.
ii) λ0 = 0.
iii) The equation

−∆p,ωu+ V |u|p−2u = 0

on G has a positive solution.
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Proof. i)⇒ii) Since QV is degenerately positive, there is a nonzero function u0
such that QV (u0) = 0. Then λ0 = 0, since QV is assumed to be nonnegative.

ii)⇒iii) Let ϕ0 be a positive eigenfunction corresponding to λ0. Then we
have

−∆p,ωϕ0 + V |ϕ0|p−2ϕ0 = λ0|ϕ0|p−2ϕ0.

on G. Since λ0 = 0, the equation has a positive solution ϕ0.
iii)⇒i) If the equation has a positive solution ϕ0, then QV (ϕ0) =

∫
G
ϕ0LV

p ϕ0
= 0, since LV

p ϕ0 = 0. So, QV is degenerately positive. □

Theorem 3.2. Let G=(G, ω) be a network. For any function V : G → R
satisfying that QV is nonnegative, the following are equivalent.

i) QV is strictly positive.
ii) λ0 > 0.
iii) The equation

−∆p,ωu+ V |u|p−2u = 0

on G has only a trivial solution.

Proof. i)⇒ii) By the definition of λ0, there is a nonzero function ϕ0 such that
QV (ϕ0)∫
G

|ϕ0|p = λ0. Since ϕ0 is nonzero, QV (ϕ0) > 0 by the assumption. So, λ0 > 0.

ii)⇒iii) Since ϕ0 is nonnegative, the equation has a unique solution by The-
orem 2.4. Clearly, a zero function satisfies the equation. So, there is only a
trivial solution.

iii)⇒i) Suppose QV is not strictly positive. Since QV is assumed to be
nonnegative, QV is degenerately positive. Then the equation has a positive
solution by the above theorem. □

Now, consider the Poisson equation

−∆p,ωu+ V |u|p−2u = f

on a network G=(G, ω). In [8], the existence of solutions of the equation
is already verified when λ0(V ) > 0. In the case p = 2 and λ0(V ) = 0, the
equation has infinitely many solutions if f is orthogonal to an eigenfunction ϕ0
corresponding to λ0(V ) by the fact that LV

2 can be interpreted as a matrix. In
case p = 3, nonlinear, consider a network G such that V (G) = {x, y} with the
standard weight. By simple calculations, we can deduce the following. For the
function V such that V (x) = 1 and V (y) = −1

4 , λ0(V ) = 0. Also, the function
ϕ0 such that ϕ0(x) = 1 and ϕ0(y) = 2. Define f(x) = −2 and f(y) = 1. Then
the function u0 such that u0(x) = −1 and u0(y) = 0 satisfies the equation.
Further, u0 is the unique solution of the equation.

Consider two functions V and W on a network G such that V (x) ≥ W (x)
for all x ∈ G. By the definition of the smallest eigenvalue, we deduce that
λ0(V ) ≥ λ0(W ).

Theorem 3.3. Let G=(G, ω) be a network. For two functions V and W on
G satisfying V ≥W on G, λ0(V ) > λ0(W ) whenever V ̸≡W .
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Proof. Let ϕ0 and ψ0 be eigenfunctions of LV
p and LW

p , respectively such that∫
G
|ϕ0|p =

∫
G
|ψ0|p = 1. Note that

QV (u) = QW (u) +

∫
G

(V −W )|u|p

and
∫
G
(V −W )|u|p ≥ 0 for all u : G→ R. Then we have

λ0(V ) = QV2(ϕ0) +

∫
G

(V −W )|ϕ0|p ≥ QW (ψ0).

Suppose V ̸≡ W . Then
∫
G
(V −W )|ϕ0|p is positive, since |ϕ0| is positive and

the set {x ∈ G|V (x) ̸=W (x)} is nonempty. So we have the following.

λ0(V ) = QW (ϕ0) +

∫
G

(V −W )|ϕ0|p > QW (ϕ0).

Since ψ0 is an eigenfunction of λ0(W ),

QW (ϕ0) ≥ QW (ψ0) = λ0(W ).

Thus λ0(V ) > λ0(W ). □
Following corollaries are derived from the above theorem.

Corollary 3.4. Let V and W be functions on a network G such that V ≥ W
and V ̸≡ W on G. If QW is nonnegative, then QV is strictly positive. If QV

is degenerately positive, then QW is nonpositive.

Corollary 3.5. Let V and W be functions on a network G where (λ0(V ), ϕ0)
and (λ0(W ), ψ0) the smallest eigenpair for LV

p , LW
p , respectively. Then the

followings are equivalent:
i) ϕ0 and ψ0 are linearly dependent.
ii) V −W ≡ λ0(V )− λ0(W ) on G.

Proof. i)⇒ii) Since ϕ0 = tψ0 for some t ∈ R \ {0}, ϕ0 is also an eigenfunction
corresponding to λ0(W ). Then

−∆pϕ0 +W |ϕ0|p−2ϕ0 = λ0(W )|ϕ0|p−2ϕ0

on G. Since
−∆pϕ0 + V |ϕ0|p−2ϕ0 = λ0(V )|ϕ0|p−2ϕ0

on G, we have

(V −W )|ϕ0|p−2ϕ0 = (λ0(V )− λ0(W ))|ϕ0|p−2ϕ0

on G. Then we have V −W = λ0(V ) − λ0(W ) on G, since ϕ0 is a positive
function.

ii)⇒i) Suppose V − W ≡ λ0(V ) − λ0(W ) on G. Put ψ0 :=
ϕ0,1∫

G
|ϕ0,1|p .

Then (λ0(V ), ψ0) is also an eigenpair and
∫
G
|ψ0|p = 1. We can deduce that

QW (ψ0) = λ0(W ), since

λ0(V ) = QW (ψ0) +

∫
G

(V −W )|ψ0|p = QW (ψ0) + λ0(V )− λ0(W ).
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That is, (λ0(W ), ψ0) is an eigenpair of LW
p . Therefore, ϕ0 and ψ0 are linearly

dependent. □

If QV and QW are degenerately positive, we have the following result.

Corollary 3.6. Let QV and QW be degenerately positive. Then V ≡W on G
if and only if ϕ0, ψ0 are linearly dependent.

4. Geometric characteristics of the set of potential terms

In this section, we study geometric characteristics of the set of potentials
having positive smallest eigenvalue.

Lemma 4.1. Let V and W be a function such that QV and QW are strictly
positive. Then QtV+(1−t)W is strictly positive for all t ∈ (0, 1).

Proof. We note that

QtV+(1−t)W (u) = tQV (u) + (1− t)QW (u)

for all u : G→ R. Since QV and QW are strictly positive, QtV+(1−t)W is non-
negative for all t ∈ (0, 1). SupposeQtV+(1−t)W is degenerately positive for some
t ∈ (0, 1). Then there is a nonzero function u0 such that QtV+(1−t)W (u0) = 0.
Then we have

QV (u0) = QW (u0) = 0.

That is, both QV and QW are degenerately positive. □

Let Ar be the set of all functions V : G → R such that λ0(V ) > r. The
above lemma means that the set A0 is convex. Since V is a function defined
on a finite set V (G), we regard a function V as a point in an n-dimensional
Euclidean space where n=|V (G)|. Hence λ0 is a real-valued function on Rn.
Moreover, the function λ0(·) is continuous and hence the set Ar is open. Also,
the boundary of A0 consists of all functions V such that λ0(V ) = 0. It is easy
to see that a zero function is in the boundary of A0.

Theorem 4.2. The set A0 is strictly convex.

Proof. By Lemma 4.1, the set A0 is convex. It suffices to show that the bound-
ary of A0 doesn‘t have any line segment. Suppose the boundary has a line seg-
ment. Take functions V andW in the boundary. For any t ∈(0,1), tV +(1−t)W
is also in the boundary. That is, λ0(tV +(1−t)W ) = 0. Then there is a nonzero
function u0 such that QtV+(1−t)W (u0) = 0. Since

QtV+(1−t)W (u0) = tQV (u0) + (1− t)QW (u0),

and both QV and QW are degenerately positive, QV (u0) = QW (u0) = 0. Then
V =W on G. □
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If a function V : G → R is positive, then QV is strictly positive. So, the
set of all positive functions is a subset of A0. Therefore, A0 is unbounded.
Further, there is a function V ∈ A0 which is not positive by Theorem 4.2. Let
V : G→ R be a function such that λ0(V ) = 0 and V (x0) < 0 for some x0. For
any u : G→ R,

QV (u) =
1

2

∑
x,y∈G

|u(y)− u(x)|pω(x, y)

+
∑
x ̸=x0

V (x)|u(x)|pdωx+ V (x0)|u(x0)|pdωx0.

Put u = δx0 where δx0(x) = 1 if x = x0 and δx0(x) = 0 otherwise. Then

QV (δx0) = dωx0 + V (x0)dωx0.

Note that δx0 is not an eigenfunction corresponding to λ0(V ), since δx0 is not a
positive function. Also, QV is degenerately positive. Thus QV (δx0

) > 0. That
is, V (x0) > −1. In all, we have the following result.

Theorem 4.3. The set A0 is strictly convex, open, unbounded. The boundary
of A0 contains the origin. Further,

A0 ⊆
∩

x0∈G

{V : G→ R|V (x0) > −1}.

The following theorem deals with how QV varies when V ∈ A0 moves on a
straight line. Since A0 is open, some neighborhood of V is contained in A0.
The direction of the line would be important.

Theorem 4.4. Let QV be strictly positive andW a function such thatW (x0) <
0 for some x0 ∈ G. Then there exist τ+ > 0 and τ− ∈ [−∞, 0) satisfying the
following :

i) QV+tW is strictly positive for t ∈ (τ−, τ+),
ii) QV+tW is degenerately positive for t = τ+(or τ− if τ− is finite),
iii) QV+tW is nonpositive otherwise.

Proof. Since A0 is open, there is ϵ > 0 such that λ0(V + tW ) > 0 for all t ∈
(−ϵ, ϵ). Let I be the largest interval containing (−ϵ,ϵ ) such that λ0(V+tW ) > 0
for all t ∈ I. Note that

QV+tW (u) = QV (u) + t

∫
G

W |u|p

for all u : G → R and t ∈ R. Since W is a function such that W (x0) < 0 for
some x0 ∈ G, there is a function u0 such that

∫
G
W |u0|p < 0. So, QV+tW (u0) <

0 if t > − QV (u0)∫
G

W |u0|p . Thus, I has the supremum which is finite. Let τ+ be the

supremum of I. Also, if there is a function u0 such that
∫
G
W |u0|p > 0, then

QV+tW (u0) < 0 whenever t > − QV (u0)∫
G

W |u0|p (If W (x) ≤ 0 for all x ∈ G, then

there is no function such that
∫
G
W |u0|p > 0). Thus, I has the infimum which
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is finite or not. Let τ− be the infimum of I. By construction, conditions i) and
ii) hold. By Theorem 4.2, there is no t > τ+ such that QV+tW is degenerately
positive. Also there is no t > τ+ such that QV+tW is strictly positive by the
intermediate value theorem. This guarantees condition iii). □

Let V be a function in the boundary of A0. When V moves on a straight
line, QV varies a strictly positive functional or not. We can guess that the
reason is also related to the direction of the straight line.

Theorem 4.5. Let QV be degenerately positive and u0 a function such that
QV (u0) = 0.Then for any potential W : G→ R, the following are equivalent.

i)
∫
G
W |u0|p > 0.

ii) there is τ+ ∈ (0,∞] such that QV+tW is strictly positive for all t ∈ (0, τ+).

Proof. ii) ⇒ i). Since QV+tW is strictly positive for all t ∈ (0, τ+), λ0(V +
tW ) > 0. Then

0 < λ0,t ≤
QV+tW (u0)∫

G
|u0|p

=
t
∫
G
W |u0|p∫

G
|u0|p

.

Since t is positive,
∫
G
W |u0|p > 0.

i) ⇒ ii) Suppose that there is a positive sequence {tn} converging to 0 such
that QV+tnW is not strictly positive for all n. Since λ0(·) is continuous,

lim
n→∞

λ0(V + tnW ) = λ0(V ).

Let ϕ0,n be a positive function such that QV+tnW (ϕ0,n) = λ0(V + tnW ) and∫
G
|ϕ0,n|p = 1 for all n. Since

∫
G
|ϕ0,n|p = 1 for all n, there is a convergent

subsequence {ϕ0,nj} of {ϕ0,n}. Then

lim
j→∞

λ0(V +tnjW )= lim
j→∞

QV+tnj
W (ϕ0,nj )= lim

j→∞
(QV (ϕ0,nj )+tnj

∫
G

W |ϕ0,nj |p).

Also

λ0(V ) = lim
j→∞

(QV (ϕ0,nj
) + tnj

∫
G

W |ϕ0,nj
|p) = QV (ϕ0),

where ϕ0 = limj→∞ ϕ0,nj . That is, ϕ0 is an eigenfunction corresponding to

λ0(V ). If u0 is a positive function such that
∫
G
|u0|p = 1, then ϕ0 = u0. Also,

for any nj ,

0 ≥ λ0(V + tnj ) = QV (ϕ0,nj ) + tnj

∫
G

W |ϕ0,nj |p ≥ tnj

∫
G

W |ϕ0,nj |p.

So,
∫
G
W |u0|p ≤ 0. □
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