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SIF AND FINITE ELEMENT SOLUTIONS FOR CORNER

SINGULARITIES

Gyungsoo Woo and Seokchan Kim∗,∗∗

Abstract. In [7, 8] they introduced a new finite element method for ac-

curate numerical solutions of Poisson equations with corner singularities.
They consider the Poisson equations with homogeneous boundary condi-

tions, compute the finite element solutions using standard FEM and use

the extraction formula to compute the stress intensity factor(s), then they
posed new PDE with a regular solution by imposing the nonhomogeneous

boundary condition using the computed stress intensity factor(s), which

converges with optimal speed. From the solution they could get an accu-
rate solution just by adding the singular part.

Their algorithm involves an iteration and the iteration number depends

on the acuracy of stress intensity factors, which is usually obtained by
extraction formula which use the finite element solutions computed by

standard Finite Element Method.

In this paper we investigate the dependence of the iteration number
on the convergence of stress intensity factors and give a way to reduce the

iteration number, together with some numerical experiments.

1. Introduction

We start with outlines of the algorithm introduced in [7, 8]. First we let Ω
be an open, bounded polygonal domain in R2 and let ΓD and ΓN be a partition
of the boundary of Ω such that ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅, and consider
the following Poisson equation with mixed boundary conditions:

−∆u = f in Ω,
u = 0 on ΓD,
∂u
∂ν = 0 on ΓN ,

(1)

where f ∈ L2(Ω) and ∆ stands for the Laplacian operator. Here, ν denote the
outward unit vector normal to the boundary.
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For simplicity, we assume that there is only one corner with the inner angle
w : 3π

2 < ω < 2π and it satisfies D/N boundary condition as in Figure 1.
In this case we have two singular functions s1 and s3 and their dual singular

functions s−1 and s−3;

sj = sj(r, θ) = r
jπ
2ω sin

jπθ

2ω
, s−j = s−j(r, θ) = r−

jπ
2ω sin

jπθ

2ω
, (j = 1, 3) (2)

for the model problem (1) and the unique solution u ∈ H1
D(Ω) has the repre-

sentation (see [3, 4]):

u = w + λ1ηs1 + λ3ηs3, (3)

where w ∈ H2(Ω) ∩ H1
D(Ω), and η is a smooth cut-off function which equals

one identically in a neighborhood of the origin and the support of η is small
enough so that the function ηs vanishes identically on ∂Ω\Γ0, where Γ0 is the
union of two adjacient boundary lines at the corner. (Here, (r, θ) is the polar
coordinate.)

Since we are considering the mixed boundary condition at the corner the
coefficient, λj , can be computed by the following extraction formula (see [3]):

λj =
2

jπ

∫
Ω

fηs−jdx+
2

jπ

∫
Ω

u∆(ηs−j)dx, (j = 1, 3) (4)

and called ‘stress intensity factors’. Note that both sj and s−j are harmonic
functions in Ω.

In [7, 8] they posed the following algorithm:

A1.: Find a solution u(0) of (1) using the standard finite element method.

A2.: Compute the stress intensity factors λ
(0)
1 and λ

(0)
3 from (4) with

u = u(0).
A3.: For i = 1, 2, · · · ,M ;

A3-1.: Solve, for w(i),
−∆w(i) = f in Ω,

w(i) = −λ(i−1)
1 s1 − λ(i−1)

3 s3 on ΓD,
∂w(i)

∂ν = 0 on ΓN .

(5)

A3-2.: Let u(i) = w(i) + λ
(i−1)
1 s1 + λ

(i−1)
3 s3.

A3-3.: Compute λ
(i)
j by

λ
(i)
j =

2

jπ

∫
Ω

fηs−jdx+
2

jπ

∫
Ω

u(i)∆(ηs−j)dx, j = 1, 3. (6)

Using this algorithm, they got efficient results in computing the numerical
solutions for Poisson equations with singularities. As we can see in Step A3,
the algorithm involves an iteration, which depends on the accuracy of the values
given in Step A2. In this paper we consider a Poisson problem with very strong
singularity and test the dependency of the accuracy of u(i) to the accuracy of

λ
(i)
j .
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Figure 1. An almostcrack domain Ω and its mixed boundary
boundary condition at concave corner

The computations will be done by using FreeFEM++ code ([5]).
We will use the standard notation and definitions for the Sobolev spaces

Ht(Ω) for t ≥ 0; the standard associated inner products are denoted by (·, ·)t,Ω,
and their respective norms and seminorms are denoted by ‖·‖t,Ω and |·|t,Ω. The
space L2(Ω) is interpreted as H0(Ω), in which case the inner product and norm
will be denoted by (·, ·)Ω and ‖ · ‖Ω, respectively, although we will omit Ω if
there is no chance of misunderstanding. H1

D(Ω) = {u ∈ H1(Ω) : u = 0 on ΓD}.

2. Stress intensity factors and algorithms

In this section we will recall the cornerstone of the algorithm given in [7, 8].
We need a cut-off function to derive the singular behavior of the problem.

We set

B(r1; r2) = {(r, θ) : r1 < r < r2 and 0 < θ < ω} ∩ Ω

and

B(r1) = B(0; r1),

and define a smooth enough cut-off function of r as follows:

ηρ(r) =


1 in B( 1

2ρ),

1
16{8− 15p(r) + 10p(r)3 − 3p(r)5} in B( 1

2ρ; ρ),

0 in Ω\B(ρ),

(7)

with p(r) = 4r/ρ− 3. Here, ρ is a parameter which will be determined so that
the singular part ηρsj has the same boundary condition as the solution u of the
model problem, where sj is the singular function which is given in (2). Note
ηρ(r) is C2.

The solution of the Poisson equation on the polygonal domain is well known
([1, 4]). Given f ∈ L2(Ω), since we assumed that there is only one reentrant
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corner with inner angle 3π
2 < ω < 2π and the boundary conditions change form

Dirichlet to Neumann at the corner, then there exists a unique solution u and
in addition there exists unique numbers λ1 and λ3 such that

u− λ1s1 − λ3s3 ∈ H2(Ω). (8)

By using the cut-off function η = ηρ, we may write

u = w + λ1ηs1 + λ3ηs3, (9)

with w ∈ H2(Ω) ∩H1
D(Ω).

The constants λj are referred as stress intensity factors and computed by the
following formula ([3]);

Lemma 2.1. The stress intensity factors λj can be expressed in terms of u and
f by the following extraction formula:

λj =
2

jπ

∫
Ω

fηs−jdx+
2

jπ

∫
Ω

u∆(ηs−j)dx, j = 1, 3. (10)

The idea of the algorithm is the following:
Assume that (1) has a solution u as in (9) and the stress intensity factor λj is
known, then the following boundary value problem:

−∆w = f in Ω,
w = −λ1s1 − λ3s3 on ΓD,
∂w
∂ν = −λ1

∂s1
∂ν − λ3

∂s3
∂ν on ΓN

(11)

has a regular solution.
Here we note that the input function f is the same as in (1).
The following theorems show (11) has a regular solution. The proofs of the

following two theorems are very similar to those in [6], although the singular
function s is different. We just state them for the completeness without proofs.

Theorem 2.2. If (1) has a solution u as in (9) with the stress intensity factor
λj(j = 1, 3), then (11) has a unique solution w in H2(Ω).

Theorem 2.3. If λj is the stress intensity factors given by (10) with the solution
u in (1) and w is the solution of (11), then u = w + λ1s1 + λ3s3 is the unique
solution of (1).

Motivated by these theorems, they posed the following algorithm:

A1.: Find a solution u(0) of (1) and

A2.: compute the stress intensity factors λ
(0)
j , j = 1, 3, from (10).

A3.: For i = 1, 2, · · · , N ;
A3-1.: Solve, for w(i),

−∆w(i) = f in Ω,

w(i) = −λ(i−1)
1 s1 − λ(i−1)

3 s3 on ΓD,
∂w(i)

∂ν = −λ(i−1)
1

∂s1
∂ν − λ

(i−1)
3

∂s3
∂ν on ΓN .

(12)
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A3-2.: Let u(i) = w(i) + λ
(i−1)
1 s1 + λ

(i−1)
3 s3.

A3-3.: Compute λ
(i)
j by

λ
(i)
j =

2

jπ

∫
Ω

fηs−jdx+
2

jπ

∫
Ω

u(i)∆(ηs−j)dx, j = 1, 3. (13)

The number of iterations in the loop of A3 is the issue of this paper. It
is known that N = 1 is enough for the cases D/N or N/D with π

2 < ω ≤ 3π
2

and cases D/D or N/N with any concave angle. We need N = 2 for the more
singular cases D/N or N/D with 3π

2 < ω < 2π ([7, 8]).
To get the purpose of this paper, we propose a modified algorithm;

MA1.: Choose two approximations λ
(0)
1 and λ

(0)
3 of the stress intensity

factors λ1 and λ3.
MA2.: For i = 1, 2, · · · , N ;

MA2-1.: Solve, for w(i),
−∆w(i) = f in Ω,

w(i) = −λ(i−1)
1 s1 − λ(i−1)

3 s3 on ΓD,
∂w(i)

∂ν = −λ(i−1)
1

∂s1
∂ν − λ

(i−1)
3

∂s3
∂ν on ΓN .

(14)

MA2-2.: Let u(i) = w(i) + λ
(i−1)
1 s1 + λ

(i−1)
3 s3.

MA2-3.: Compute λ
(i)
j by

λ
(i)
j =

2

jπ

∫
Ω

fηs−jdx+
2

jπ

∫
Ω

u(i)∆(ηs−j)dx, j = 1, 3. (15)

3. Finite element approximation

In this section we present the standard finite element approximation for the
algorithms considered in the previous section. First we assume the P1 finite
element spaces Vk nested, i.e.,

V1 ⊂ V2 ⊂ · · · ⊂ H1
D(Ω),

whose mesh sizes hk = maxT∈Tk diamT are related by

hk = 2hk+1 for k = 1, 2, 3, · · · .

Here Tk is a partition of the domain Ω into triangular finite elements; i.e.,
Ω = ∪K∈TkK, and Vk is a continuous piecewise linear finite element space; i.e.,

Vk = {φh ∈ C0(Ω) : φh|K ∈ P1(K) ∀K ∈ Tk, φh = 0 on ΓD} ⊂ H1
D(Ω),

where P1(K) is the space of linear functions on K.
Now, the approximated solution uk ∈ Vk of the algorithm in [7, 8] comes as

in the following:

FEA1.: find u
(0)
k ∈ Vk such that

(∇u(0)
k ,∇v) = (f, v), ∀ v ∈ Vk. (16)
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FEA2.: Then, compute λ
(0)
j,k by

λ
(0)
j,k =

2

jπ

∫
Ω

fηs−jdx+
2

jπ

∫
Ω

u
(0)
k ∆(ηs−j)dx, j = 1, 3. (17)

FEA3.: Do the followings, for i = 1, 2, · · · , N ;

FEA3-1.: find w
(i)
k such that w

(i)
k + λ

(i−1)
1,k s1 + λ

(i−1)
3,k s3 ∈ Vk and

(∇w(i)
k ,∇v) = (f, v)− λ1(

∂s1

∂ν
, v)|ΓN − λ3(

∂s3

∂ν
, v)|ΓN , ∀ v ∈ Vk. (18)

FEA3-2.: Set u
(i)
k = w

(i)
k + λ

(i−1)
1,k s1 + λ

(i−1)
3,k s3.

FEA3-3.: Compute λ
(i)
j,k by

λ
(i)
j,k =

2

jπ

∫
Ω

fηs−jdx+
2

jπ

∫
Ω

u
(i)
j,k∆(ηs−j)dx, j = 1, 3. (19)

Now our modified finite element approximation is the following:

MFEA1.: Choose two approximations λ
(0)
1 and λ

(0)
3 of the stress inten-

sity factors λ1 and λ3.
MFEA2.: For i = 1, 2, · · · , N ;

MA2-1.: Solve, for w(i),
−∆w(i) = f in Ω,

w(i) = −λ(i−1)
1 s1 − λ(i−1)

3 s3 on ΓD,
∂w(i)

∂ν = −λ(i−1)
1

∂s1
∂ν − λ

(i−1)
3

∂s3
∂ν on ΓN .

(20)

MA2-2.: Let u(i) = w(i) + λ
(i−1)
1 s1 + λ

(i−1)
3 s3.

MA2-3.: Compute λ
(i)
j by

λ
(i)
j =

2

jπ

∫
Ω

fηs−jdx+
2

jπ

∫
Ω

u(i)∆(ηs−j)dx, j = 1, 3. (21)

Now we are ready to investigate the dependence of the iteration numbers
on the convergence of stress intensity factors and give a way to reduce the
iteration number. This will be done by choosing special sequences of stress
infactor factors for the mixed boundary poisson problem with bad singularity.

4. Numerical results and conclusion

As a model problem we consider a Poisson problem with the mixed boundary
condition, on a concave corner with an inner angle ω = 39π

20 .
Example 1. Consider a Poisson equation (1) on a domain Ω = ((−1,−1)×

(1, 1))\
{

(x, y) : 0 ≤ x ≤ 1,− tan( π20 )x ≤ y ≤ 0
}

as in Figure 1. Note that the
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inner angle ω = 39π
20 , and the singular functions are given by

s1 = s1(r, θ) = r
10
39 sin

10θ

39
and s3 = s3(r, θ) = r

10
13 sin

10θ

13
.

Let f = −∆(η0.75s1) − ∆(η0.75s3) with the exact solution uexact = η0.75s1 +
η0.75s3. So, the exact stress intensity factors are λ1 = λ3 = 1.

We choose approximations of λ
(0)
1 and λ

(0)
3 in MFEA1. as follows;

Let λ
(0)
1 = 1 − 3hα and λ

(0)
3 = 1 + 3hα with α = 1

2 ,
3
4 , 1,

5
4 ,

3
2 ,

7
4 . So, α plays a

role as a convergence rate of approximated stress intensity factors.

Remark : If we are considering the Poisson problem defined on L-shape
domain with Mixed boundary condition, the stress intensity factors computed
form the standard finite element solution uh of (1) converge with convergence
rate 2 · π2ω = 2

3 since ω = 3π
2 .(See [8])

We list the computational results in Table 1-6, by MFEA. algorithms for
each α′s.

h λ
(0)
1 λ

(0)
3 ||E||L2 λ

(1)
1 λ

(1)
3

1/4 -0.50000 2.50000 2.66070E-01 ratio 0.34173 0.37073
1/8 -0.06066 2.06066 1.11536E-01 1.25430 0.73983 0.81557
1/16 0.25000 1.75000 4.75939E-02 1.22866 0.98754 0.95405
1/32 0.46967 1.53033 2.16401E-02 1.13707 1.01088 0.98859
1/64 0.62500 1.37500 1.03324E-02 1.06653 1.01272 0.99712
1/128 0.73484 1.26517 4.98632E-03 1.05113 1.00784 0.99933

Table 1. The case α = 1
2 : The L2-norm errors of uh with the

convergence ratios and the values of λ
(1)
j , j = 1, 3

h λ
(0)
1 λ

(0)
3 ||E||L2 λ

(1)
1 λ

(1)
3

1/4 -0.06066 2.06066 2.17383E-01 ratio 0.24643 0.36003
1/8 0.36933 1.63067 7.85979E-02 1.46768 0.65732 0.81936
1/16 0.62500 1.37500 2.71654E-02 1.53272 0.94535 0.95413
1/32 0.77702 1.22298 9.80635E-03 1.46998 0.98716 0.98864
1/64 0.86742 1.13258 3.82088E-03 1.35981 0.99995 0.99711
1/128 0.92117 1.07883 1.51319E-03 1.33631 1.00106 0.99932

Table 2. The case α = 3
4 : The L2-norm errors of uh with the

convergence ratios and the values of λ
(1)
j , j = 1, 3
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h λ
(0)
1 λ

(0)
3 ||E||L2 λ

(1)
1 λ

(1)
3

1/4 0.25000 1.75000 1.86838E-01 ratio 0.17904 0.35246
1/8 0.62500 1.37500 6.18121E-02 1.59583 0.60826 0.82161
1/16 0.81250 1.18750 1.83723E-02 1.75036 0.92426 0.95417
1/32 0.90625 1.09375 5.33574E-03 1.78377 0.97719 0.98866
1/64 0.95313 1.04688 1.64710E-03 1.69576 0.99543 0.99711
1/128 0.97656 1.02344 5.10949E-04 1.68868 0.99905 0.99932

Table 3. The case α = 1 : The L2-norm errors of uh with the

convergence ratios and the values of λ
(1)
j , j = 1, 3

h λ
(0)
1 λ

(0)
3 ||E||L2 λ

(1)
1 λ

(1)
3

1/4 0.46967 1.53033 1.68306E-01 ratio 0.13139 0.34710
1/8 0.77702 1.22298 5.38757E-02 1.64338 0.57909 0.82295
1/16 0.90625 1.09375 1.51040E-02 1.83470 0.91371 0.95419
1/32 0.96058 1.03942 3.96232E-03 1.93051 0.97300 0.98867
1/64 0.98343 1.01657 1.04768E-03 1.91915 0.99383 0.99711
1/128 0.99303 1.00697 2.67995E-04 1.96692 0.99845 0.99932

Table 4. The case α = 5
4 : The L2-norm errors of uh with the

convergence ratios and the values of λ
(1)
j , j = 1, 3

h λ
(0)
1 λ

(0)
3 ||E||L2 λ

(1)
1 λ

(1)
3

1/4 0.62500 1.37500 1.57312E-01 ratio 0.09769 0.34332
1/8 0.86742 1.13258 5.02744E-02 1.64573 0.56174 0.82375
1/16 0.95313 1.04688 1.40045E-02 1.84393 0.90843 0.95420
1/32 0.98343 1.01657 3.62005E-03 1.95181 0.97123 0.98868
1/64 0.99414 1.00586 9.21911E-04 1.97331 0.99327 0.99711
1/128 0.99793 1.00207 2.28341E-04 2.01344 0.99827 0.99932

Table 5. The case α = 3
2 : The L2-norm errors of uh with the

convergence ratios and the values of λ
(1)
j , j = 1, 3

Recall that, in [8], they suggested an efficient algorithm to get accurate nu-
merical solutions for (1), which contains one or two iteration(s). Moreover, the

iteration number depends on the accuracy of λ
(0)
j , j = 1, 3.

By the above six numerical experiments, we can get several important re-
marks and conclusion as in followings;
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h λ
(0)
1 λ

(0)
3 ||E||L2 λ

(1)
1 λ

(1)
3

1/4 0.73484 1.26517 1.50842E-01 ratio 0.07387 0.34064
1/8 0.92117 1.07883 4.86304E-02 1.63311 0.55143 0.82422
1/16 0.97656 1.02344 1.36308E-02 1.83499 0.90580 0.95421
1/32 0.99303 1.00697 3.53610E-03 1.94664 0.97049 0.98868
1/64 0.99793 1.00207 8.95972E-04 1.98063 0.99307 0.99711
1/128 0.99938 1.00062 2.22535E-04 2.00942 0.99822 0.99932

Table 6. The case α = 7
4 : The L2-norm errors of uh with the

convergence ratios and the values of λ
(1)
j , j = 1, 3

Remark 1 : In most cases, the stress intensity factors λ
(1)
j are better than

λ
(0)
j , j = 1, 3. So we can get more accurate stress intensity factors by applying

the algorithm.

Remark 2 : When we use the values λ
(0)
j in the algorithm, with convergence

ratio α ≤ 1 for the stress intensity factors used in MA1, then we may not get
the optimal convergence in uh as we see in Table 1-3.

Remark 3 : The results in Table 5-6 shows that we have almost the same
results for both cases with α = 3/2 and α = 7/4. That means that we cannot
get any better results if the ratio of convergenc reaches to some degree.

Finally, we have the following regarding the convergence factors.
Conclusion : If we can find relatively accurate stress intensity factors

with convergence rate approximately larger than 5/4, then the iteration number
M = 1 is enough for the algorithm in [7, 8].
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