J. KSIAM Vol.21, No.4, 203-214, 2017 http://dx.doi.org/10.12941/jksiam.2017.21.203

A POSTERIORI ERROR ESTIMATORS FOR THE STABILIZED LOW-ORDER
FINITE ELEMENT DISCRETIZATION OF THE STOKES EQUATIONS BASE D
ON LOCAL PROBLEMS

KWANG-YEON KIM

DEPARTMENT OFMATHEMATICS, KANGWON NATIONAL UNIVERSITY, KOREA
E-mail addresseul er ki m@&angwon. ac. kr

ABSTRACT. In this paper we propose and analyze two a posteriori estimators for the sta-
bilized P,/P; finite element discretization of the Stokes equations. &leesor estimators are
computed by solving local Poisson or Stokes problems oneziégrof the underlying triangu-
lation. We establish their asymptotic exactness with retsigethe velocity error under certain
conditions on the triangulation and the regularity of theasolution.

1. INTRODUCTION

It is well known that a pair of finite element spaces for theoe#y and the pressure of the
Stokes equations cannot be chosen arbitrarily but shotikfysthe discrete inf-sup condition
(also known as the LBB condition). This condition prohilit® computationally convenient
eqgual-order combination which uses the same element fhrthetvelocity and the pressure. To
remedy the situation for the low-ordét/P; pair, Brezzi and Pitkaranta [1] added a weighted
Laplace operator of the pressure to the continuity equdtorihe purpose of stabilization.
Afterwards, several stabilized formulations were introelli in the late 1980's by adding the
weighted residual of the momentum equation to the origioahfilation of the Stokes equa-
tions [2-5]. These formulations are consistently stabidimethods and allow any combination
of velocity and pressure finite element spaces. In the e P,/ P, case, they are reduced
to the method of Brezzi and Pitkaranta [1] with a modifiedhtigand side. More recently, dif-
ferent approaches using the local pressure or pressurggrguojections have been studied
by many authors; see, for example, [6-9].

One remarkable feature of the stabiliz&y/P; finite element discretization is that the a
priori error estimate predicts th@(h) convergence for the velocity in thé' norm and the
pressure in thé? norm, but theD (h3/2) convergence is numerically observed for the pressure
in the L? norm. This observation was theoretically explained by tleekvof Eichel et al [10]
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where theO(h?/?) superconvergence is established under certain conditionise triangula-
tion and the regularity of the exact solution.

A posteriori error estimation provides quantitative amdfoalitative information about the
distribution of numerical errors and is indispensable @mral error control and mesh refine-
ment. There have been many works devoted to a posterior estination for finite element
discretizations of the Stokes equations employing theleapd@r P;/P; pair. In [11] Verfurth
presented two error estimators for the linear part of theacist approximation of the mini
element, one of which is based on the residual of the finitmete solution and the other
one is based on solution of local Stokes problems. For &abilP,/P; finite element meth-
ods, Bank and Welfert [12] proposed some error estimat@edan stabilized forms of local
Stokes problems. Other types of error estimators basedeoprtjection operator as well as
the residual of the finite element solution were discussddidni4]. We also refer to [15, 16]
for analysis of the residual-based error estimator in thieeod of consistently stabilized finite
element methods of general orders.

The goal of this paper is to propose and analyze two a posterimr estimators for the
stabilized P,/ P; finite element discretization of the Stokes equations. @neomputed by
solving local Poisson problems and the other one by solvinglIStokes problems. Both local
problems are adaptation of the ones considered by Kay amds& [17] for the stabilized
P,/ P, finite element method. It is shown that our error estimatoeseguivalent to each other
and locally efficient. Moreover, they are reliable under gaig saturation assumption. In
particular, by virtue of the superconvergence result of,[#@& will establish the asymptotic
exactness of the velocity components of these error esiimatith respect to the velocity
error.

The rest of the paper is organized as follows. The next sediscribes the stabilized, / P
finite element discretization of the Stokes equations. kti&es 3 and 4 we define a posteriori
error estimators based on local Poisson and Stokes probledrtiien establish their asymptotic
exactness.

2. STABILIZED Pi/P; FINITE ELEMENT DISCRETIZATION

Let @ c R? be a bounded polygonal domain with the boundafy. Given the vector-
valued functionsf € (L?(Q))? andg € (H'/?(9%2))?, we consider the incompressible Stokes
equations

—pAu+Vp=f in €,
V-u=0 in Q, (2.2)
u=g onof,
whereu andp represent the velocity and the pressure, respectivelycaimpatibility condition

J509 - nds = 0, wheren denotes the unit outward normal vectordQ, is required to ensure
existence and uniqueness of a solutianp).
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The weak formulation for the problem (2.1) is to fitd, p) € (H'(2))? x L3(£2) such that
ulpo = g and

{M(Vu, Vo)o — (V-v,p)a = (fv)e Yo e (H)(Q)?,

(V wg)a =0 ) 22

where(-,)g (resp. (-,-)oc) is the standard.? inner product over a domai@ c R? (resp.
overdG) andL3(Q) is the space of functions ih?(2) with zero integral mean. From now on
we sety, = 1 andg = 0 for simplicity.

In order to define a finite element discretization for (2.28,imtroduce a family{ 7, } .~ of
shape-regular conforming triangular meshes such(hat UTeTh T for eachh > 0, where
h = maxreT, hr andhr is the diameter of .

Throughout the paper,’ will denote a generic positive constant independent of teshm
size h which may be different at different places. We also denogestndard Sobolev norm
and seminorm over a domafwby || - || ,.¢ and| - |5 p.c, respectively, with the convention that

I lls2c=1-llscand|-|s2c=1-|sc-
Let P.(T) be the space of all polynomials of degre€e- onT" and let

Wi = {v, € H(Q) : vp|r € P.(T) VT € Tp,}.
Then the velocity and pressure finite element spaces arerhodbe
V=W, NHy(Q)?  Qn=W, NLHQ).

Since this pair does not satisfy the discrete inf-sup camiBrezzi and Pitkaranta [1] consid-
ered the following stabilized form of (2.2): finde, pr) € V1, X Qp, such that

(Vup, Vop)a — (V-vn,pn)a = (f,vn)a Yo, € Vi,
(V- un, qn)a + Su(pn,qn) =0 Van € Qn,

where the stabilization term is given by

Su(p,q) = > vh7(Vp,Vo)r
TeTh

(2.3)

with a positive constant. We refer to [6-9] for the stabilization based on the locakgure or
pressure gradient projections which does not involve thehnparametet or computation of
derivatives.

Remark 1. Due to the added stabilization term in (2.3), we havegipe )y,
(v - u, Qh)Q + Sh(p7 Qh) = Sh(p7 Qh) 7é 07

which means that the formulation (2.3) is inconsistent. &ierit consistent, one may add the
term ZTGT}L vh2.(f, Vq)r to the right-hand side of the second equation of (2.3) as iedo
the residual-based stabilization [2, 3, 5].
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The following a priori error estimate for (2.3) can be foufat,example, in [8]

I(w — wn, p = pp)ll < Ch(|[ullz + [Ipl10) (2.4)
with respect to the the mesh-dependent norm

1/2
Io.0l = (IVol0 + o+ 3 #IValRe)
TETh
Finally, we present the superconvergence result for thénaae2.3) proved in [10] when
the triangulationg 7}, },~¢ satisfy the following condition introduced in [18]:

Condition («, 0): For eachh > 0, the triangulatiori/;, can be partitioned into two disjoint sets
T1,n U Tz, With some positive constantsando in such a way that

* every two adjacent triangles gf , form anO(h'**) parallelogram, i.e., the lengths
of any two opposite edges differ only lgy(h!+%);

e the total area of Jr..,, T'is O(h7).

Roughly speaking, this condition means that most pairs jofcadt elements iff;, form almost
parallelograms and there are only a small number of exaggitiElements.

Suppose that the triangulatiofi§;, } ,~o satisfy the Conditioria, o) and(u, p) € (H3(Q2)N
W2>2(Q))? x H?(2). Letv; € Wl denote the standard nodal interpolantaf C(2). Then
the following superconvergence result was establishetiGh [

I(wr —un,p = pu)l < CRH(lulls o + [lufl2,00.0 + [lP]l20) (2.5)
with p = min(e, %, ). By comparing with (2.4), it should be observed that the sues

approximation is itself superconvergent. This explairesrtbmerically observe@®(h3/2) con-
vergence of the pressure on uniform meshes (with o = ).

3. ERRORESTIMATOR BASED ONLOCAL POISSONPROBLEMS

In this section we propose and analyze an error estimatothiostabilizedP;/P; finite
element discretization (2.3) based on solution of locak&m problems. This error estimator
is an adaptation of the one considered by Kay and Silvesi@if¢t the stabilizedP, /P, finite
element method.

Let us introduce some notation needed in defining the ertonatr. The normal derivative
of a vector-valued functiom on 9T is denoted by2% := (Vv)nr, whereny is the unit

normal outward td’, and its jump across an interior edge- 97 N 97" is defined as

ov _Ov ov
on e N 8TLT T 8TLT/ T"
Lety, € W,? be the quadratic bump function associated with the edgech that).(m.) =

de.er, Wherem, is the midpoint ofe’, and define the local space
PY(T) = span{t). : e C OT}.
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It is well known that the following useful inequalities hdior v € PY(T)

oo < ChrllVolor, — Ilvloar < Chy*|IVollor 3.1)

which can be derived by the standard scaling argument.
Now we are ready to define the local Poisson problems and thesponding error estima-
tor.

Definition 1. For everyT € Ty, finder € (PY(T))? such that for allw € (PY(T))?,

(Ver,Vo)r = (f — Vpy,v)r — %< H%ﬂ ’v>8T\8§27 (3.2)

and compute the error estimator

12
np = < > HVSTH%,T) + IV - unllo0-
TET

The local problem (3.2) always has a unique solution bec&J$&) does not contain con-
stants. Besides, it decouples into two independent Poigsairiems which require solving
3 x 3 matrix systems.

The local efficiency of the error estimatgp can be derived by comparing it with the resid-
ual error estimator. To show thap is reliable, we make the following saturation assumption
which is similar to the one of Bank and Welfert [12]:

Saturation Assumption: Let (u2,p1) € (W72 N H(Q))? x Qp, be the Taylor—Hood finite
element approximation tau, p). Then there is a constaft< § < 1 independent of the mesh
sizeh such that

IV(u —wua)llo.o+ llp = pilloe < BIV(w —up)lloo+ P —pallog)  (3:3)

Observe that the> /P, finite element is adopted here, while the stabilizeédP, finite
element is used in [12]. By the a priori error estimate (2.4) axpect that this assumption
holds for sufficiently smalh, at least when:, andp are regular.

In the following theorem we prove that the error estimagpiis reliable and efficient in the
usual sense.

Theorem 3.1. Let f,, be any piecewise polynomial approximationfof Then the following
local lower bound holds

IVerllor + IV - unllor < CIV(w = un)llowr + lp = prllowr + hrllf = Fillor),

wherewr is the union ofl" and those triangles sharing edges with Moreover, under the
saturation assumption (3.3), we have

[V (uw —up)lloo + [P — prlloo < Cnp.
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Proof. Takingv = 7 in (3.2) and applying the inequalities (3.1), we obtain

ka
on 0,8T\8Q‘

Since the right-hand side represents the standard residi@l estimator, it can be further
bounded as in the proof of Theorem 3 of [15]. Besides, we have

IV -upllor = IV - (up — u)llor < 2[[V(w —up)or-

This proves the first result.
On the other hand, iy € (W?N H}(£2))? vanishes at the vertices @f, then the integration
by parts yields

(f,w)e = (Vup, Vw)a + (V- w.pp)e = Y (Ver, Vw)r.
TET,,
Hence, for alb € (W2 N H{(2))? andg € Q, it holds that
(V(uz —up), Vo)o — (V- v,p1 — pr)a
f,’U)Q - (V’U/h, V'U)Q + (v : vaph)Q
fov—vr)a— (Vup, V(v —vp))o+ (V- (v —v1),pr)o
= Z (VST,V('U — ’U]))T
TET,,
(V- (uz2 —up),q)o = —(V - up, q)a

sincev — vy € (W7?N H{(2))? vanishes at the vertices . By stability of the Taylor—Hood
element and the inequalityv’ (v — vr)ljo.0 < C||Vv||0,0, we obtain

IVerllor < Chrllf — Vpnlor + Cth/Q

= (
= (

1/2
19 (2 — wn)llos + o1 — prllose < c{( > HVsTuaT) v uhum} — Cnp.
TeT,

Finally, combining the saturation assumption (3.3) andtiamgle inequality gives
1
IV(w = up)lloo + [[p = pullog < m(\lv(uz =)o + llpr = palloe),
from which the second result follows. O

Now we suppose that the triangulatiofi®, } - satisfy the Conditior{c, o) and establish
the asymptotic exactness of the first teftl .. |Ver||2)'/. Following the techniques

of [19, 20], we introduce an auxiliary function defined in emsar way toer: for givenw €
(H?(w))?, letq,, € (PY(T))? be such that for alb € (PY(T))?,
1 ow
(V@y, VU)r = (—Aw,v)p — —< HTIH ,v> . (3.4)
2 n aT\0Q

Recall thatw; € (W}!})? denotes the standard nodal interpolantwof
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The following lemma generalizes the result of [19] for unifomeshes and has the same
form as Lemma 6.4 and (6.15) of [20] given for the equilibdatesidual method. The proof
goes in almost the same way as in [20] and is given here foregier's convenience.

Lemma 3.2. For everyT € T, we have
IV@yllor < Chrllwll2wy- (3.5)
If T € T, has no boundary edges and all triangleswaf belong to7; 5, then we have for
w € (H3(wr))?
IV (w = wr) = Vaylox < Chy™ ™V |lw]ls.ur. (3.6)
Proof. Since[2¥] = 00ndT \ 99 for w € (H%(wr))?, the equation (3.4) becomes

The first result (3.5) is obtained by takimg= g,, and applying the interpolation error estimate
for w — w; and the inequalities (3.1).

Now we turn to the second result (3.6). Letc (P (wr))2. Then the integration by parts
give for allv € (PY(T))?

(V(z — 21 —q,),Vo)r = <%(z - zf)’”>aT - %< H%ﬂ ’v>a:r
<

=Y 2ol 5z~ 2D me) - v(m,),

anr
wheref{v}|. = 3(v|7 + v|r) for e = 9T N T’ and|e| denotes the length af By using the
estimate (see, for example, Lemma 7.1 of [20])
[Vz(me) = {Vzrble| < Chr™|2l2000r,
it follows that
(V(z = 21 — 4.), Vo)r| < ChE |2 200 wr[0ll0.00.7 < ChSI2l2r [0 ll0r
< Chrzl2wr VO ll07-

Takingv = z — z; — g, we obtain

IV(z =21 — q.)|lor < Chi®|z]2.0- (3.7)
The results (3.5) and (3.7) lead to

IV (w — wr) — Vaglor < IV (w — 2) = V(w — 2); — Vy_.[lor
+1IV(z = zr —a;)llor
< Chr|w — 2|20y + Chy ™| 2|20y
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Finally, choosex € (P (wr))? satisfying|w—2z||2.u, < Chr|lw|s.., and note thafz || ., <
Cllw||3w, - This proves the second result (3.6).
Lemma 3.3. Let (u, p) be the solution of (2.1). Then we have for evérg 7},
V(g —er)llo,r < C([V(ur = wn)llowy + hrl[V(p = pa)llo,r)-
Proof. Substitutingf = —Awu + Vp in (3.2) and using the inequalities (3.1), we obtain for all
v € (P(T))?
1 0
(V(gy —er), Vv)r = —=(V(p — pr),v)7 — 3 a—(uI —up)|,v
2 n aT\oQ

< C([IV(ur — up)llowr + hrl[V(e = pu)llor)[Vollor-
The desired result is derived by takieg= q,, — €. O

With the aid of the previous two lemmas we are able to provddhawving result.

Theorem 3.4. Assume that the triangulatiodd7}, } .~ satisfy the Conditiofia, ) and(w, p) €
(H3(Q) N W?2>°(Q))2 x H%(Q). Then we have

1/2
( Do AV(u—uy) - VeTH%,T> < Ch*™**(||ulls.0 + [ull2000 + [Pl2.0)
TeT),

with p = min(c, 1, ). Moreover, if| V(u — uy) |00 > Ch for some constanf' > 0, then it
holds that

npe1
’ — 1| = o),
’nwu—uh)no,g ’ )

1/2
wherenp, i= (Srer [Ver|2s)'”.

Proof. The second result follows easily from the first result, ashiga in Theorem 5.3 of
[20], so we only give a proof for the first result.
The triangle inequality gives

IV(u —up) — Verlor <[IV(u —ur) = Va,llor
+ IV (ur —un)llor + IV(qy — €1)lo,7-
Let7~'17h C Ti,, be the set of all” € T, such thabT N 0N = () andNaII triangles ofur belong
to 71,,. Then, by virtue of (3.6) and Lemma 3.3, we obtainToe 7,
|V (w = un) = Verllor < Chr™ Y ulls o
+ C([IV(ur = wp)llowr + hrl[V(p = pa)llo,r)-
ForT € Tp \ 7~'1,h, the inequality (3.5) and Lemma 3.3 give
IV(w —up) = Ver|or < Chrlull2w,
+ C([IV(ur = wp)llowy + hrl[V(p = pa)llo,r)-
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Consequently,
Y IV(u—up) = Ver|gr
TET;,

< O ulfo+ Rt 3 Jullu, + Clur = wip =l
TET\T1,n

Furthermore, by the Conditiofx, o) we have
> by < (X rl)lulacn < OO ul
TET\Tin TeT\Ti,n
and the third term is bounded by invoking the superconvexgarsult (2.5). The proof is
completed by collecting the above results. O
4. ERRORESTIMATOR BASED ONLOCAL STOKES PROBLEMS

In this section we analyze an error estimator based on enlofithe following local Stokes
problems:

Definition 2. For everyT € Ty, find (e, e) € (PY(T))? x Py(T) such that for all(v, s) €
(P3(T))* x Ry(T),

1 0
(Ver, Vo)r = (V-v,ep)r = (f = Vpn o)1 — _< H%ﬂ ’”>
2 n aT\o0
(V ' 5}7 S)T = —(V s Uup, S)T7

and compute the error estimator

1/2
ns — { S (IVes B + ||eifp|r%,T>} -

TeTh

(4.1)

The local problem (4.1) can be viewed as a Stokes probleffiwith a Neumann boundary
condition and require solving x 7 matrix systems. It is straightforward to prove the local
inf-sup condition

inf sup M >my >0,
a€P(T) pe(PY(T))2 IVollo,rllgllo,r
so the problem (4.1) is well-posed for evérye 7j,.

An error estimator of this type was first proposed by Veffijitl] for the mini element who
used the quadratic bump and cubic bubble functions to shlwddcal Stokes problems. In
[12] Bank and Welfert considered the stabilized forms ofltdwl Stokes problems using the
guadratic bump functions only for both the velocity and ptge errors. Our error estimator
uses thePy / P, element and is very similar to the one of Kay and Silvestef (fposed for
the stabilizedP, /P, finite element method) which uses tﬁ’é/Pl element.
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The following theorem shows that is locally equivalent tayp. This, in particular, implies
that Theorem 3.1 is valid fays as well as fomp.

Theorem 4.1. Leter be defined by (3.2) and I¢¢7, e7.) be defined by (4.1). Then we have
for everyT € T;,

Ci([IVerllor + IV - unllor) < [Verlor + llerllor < C2(Verlor + IV - unllor)-
Proof. By (3.2) and (4.1), we have fdw, s) € (PY(T))? x Py(T)
(VEJ;“, V’U)T — (V . v,e})T = (VEJT, V’U)T
(V-ep,s)r =—(V-up,s)r.

Thus the right inequality is a direct consequence of the-padiedness of the local problem
(4.1). The left inequality follows easily by taking = €7, s = V - u;, and then applying the
Cauchy—Schwarz inequality. O

Finally, we prove the following analogue of Theorem 3.4 whgtates that the velocity
component of the error estimatgg is asymptotically exact.

Theorem 4.2. Under the assumptions of Theorem 3.4, we have

1/2 1/2
( S 19— ) — MH%,T) n ( 3 He;H%,T)

TeT TeTh
< Ch™* (||l 0 + w2000 + Pl20)  (4.2)

with p = min(c, 1, ). Moreover, if|[ V(u — uy,) |00 > Ch for some constanf' > 0, then it
holds that

ns.1
’ —1|=0(n),
’nwu—uh)no,g ’ ()

wherens, = (Lrer, [IVerlg )"
Proof. Leter be defined by (3.2). By (3.2), (4.1) and the incompressjbilanditionV-u = 0,
we have for(v, s) € (PY(T))? x Py(T)
(V(er —er),Vu)r — (V- -v,ep)r =0
{ (V-(er—er),s)r=(V-(u—up—er),s)r.
Then it follows by the well-posedness of the local probleni)4hat
IV(er —er)llor + llerllor < ClIV(w —up —er)lor
and thus
IV(w —un) = Verlor + llerllor < OV (w —up) — Verlor.

This proves the first result (4.2) by Theorem 3.4. The secesdltfollows from (4.2), as stated
in the proof of Theorem 3.4. O
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Remark 2. The superconvergence result (2.5) and the estimate (dRates that the pressure
error ||p — ppllo.o and the pressure componeqd_ - He}H%’T)l/2 of ng are both of the

order O(h'**) under the assumptions of Theorem 3.4, so they becomesibiegtigmpared
with their velocity counterparts als — 0. This leads to

ns
— 1| = O(h").
1/2
(IV(w = un)|Zo + lIp — prl2o)

In other wordsj)g is asymptotically exact with respect to the total error.
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