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ABSTRACT. In this paper we propose and analyze two a posteriori error estimators for the sta-
bilizedP1/P1 finite element discretization of the Stokes equations. These error estimators are
computed by solving local Poisson or Stokes problems on elements of the underlying triangu-
lation. We establish their asymptotic exactness with respect to the velocity error under certain
conditions on the triangulation and the regularity of the exact solution.

1. INTRODUCTION

It is well known that a pair of finite element spaces for the velocity and the pressure of the
Stokes equations cannot be chosen arbitrarily but should satisfy the discrete inf-sup condition
(also known as the LBB condition). This condition prohibitsthe computationally convenient
equal-order combination which uses the same element for both the velocity and the pressure. To
remedy the situation for the low-orderP1/P1 pair, Brezzi and Pitkäranta [1] added a weighted
Laplace operator of the pressure to the continuity equationfor the purpose of stabilization.
Afterwards, several stabilized formulations were introduced in the late 1980’s by adding the
weighted residual of the momentum equation to the original formulation of the Stokes equa-
tions [2–5]. These formulations are consistently stabilized methods and allow any combination
of velocity and pressure finite element spaces. In the equal-orderP1/P1 case, they are reduced
to the method of Brezzi and Pitkäranta [1] with a modified right-hand side. More recently, dif-
ferent approaches using the local pressure or pressure gradient projections have been studied
by many authors; see, for example, [6–9].

One remarkable feature of the stabilizedP1/P1 finite element discretization is that the a
priori error estimate predicts theO(h) convergence for the velocity in theH1 norm and the
pressure in theL2 norm, but theO(h3/2) convergence is numerically observed for the pressure
in theL2 norm. This observation was theoretically explained by the work of Eichel et al [10]
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where theO(h3/2) superconvergence is established under certain conditionson the triangula-
tion and the regularity of the exact solution.

A posteriori error estimation provides quantitative and/or qualitative information about the
distribution of numerical errors and is indispensable for local error control and mesh refine-
ment. There have been many works devoted to a posteriori error estimation for finite element
discretizations of the Stokes equations employing the equal-orderP1/P1 pair. In [11] Verfürth
presented two error estimators for the linear part of the velocity approximation of the mini
element, one of which is based on the residual of the finite element solution and the other
one is based on solution of local Stokes problems. For stabilizedP1/P1 finite element meth-
ods, Bank and Welfert [12] proposed some error estimators based on stabilized forms of local
Stokes problems. Other types of error estimators based on the projection operator as well as
the residual of the finite element solution were discussed in[13, 14]. We also refer to [15, 16]
for analysis of the residual-based error estimator in the context of consistently stabilized finite
element methods of general orders.

The goal of this paper is to propose and analyze two a posteriori error estimators for the
stabilizedP1/P1 finite element discretization of the Stokes equations. One is computed by
solving local Poisson problems and the other one by solving local Stokes problems. Both local
problems are adaptation of the ones considered by Kay and Silvester [17] for the stabilized
P1/P0 finite element method. It is shown that our error estimators are equivalent to each other
and locally efficient. Moreover, they are reliable under a certain saturation assumption. In
particular, by virtue of the superconvergence result of [10], we will establish the asymptotic
exactness of the velocity components of these error estimators with respect to the velocity
error.

The rest of the paper is organized as follows. The next section describes the stabilizedP1/P1

finite element discretization of the Stokes equations. In Sections 3 and 4 we define a posteriori
error estimators based on local Poisson and Stokes problemsand then establish their asymptotic
exactness.

2. STABILIZED P1/P1 FINITE ELEMENT DISCRETIZATION

Let Ω ⊂ R
2 be a bounded polygonal domain with the boundary∂Ω. Given the vector-

valued functionsf ∈ (L2(Ω))2 andg ∈ (H1/2(∂Ω))2, we consider the incompressible Stokes
equations





−µ∆u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on∂Ω,
(2.1)

whereu andp represent the velocity and the pressure, respectively. Thecompatibility condition∫
∂Ω g ·n ds = 0, wheren denotes the unit outward normal vector to∂Ω, is required to ensure

existence and uniqueness of a solution(u, p).
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The weak formulation for the problem (2.1) is to find(u, p) ∈ (H1(Ω))2 ×L2
0(Ω) such that

u|∂Ω = g and
{
µ(∇u,∇v)Ω − (∇ · v, p)Ω = (f ,v)Ω ∀v ∈ (H1

0 (Ω))
2,

(∇ · u, q)Ω = 0 ∀q ∈ L2
0(Ω),

(2.2)

where(·, ·)G (resp. 〈·, ·〉∂G) is the standardL2 inner product over a domainG ⊂ R
2 (resp.

over∂G) andL2
0(Ω) is the space of functions inL2(Ω) with zero integral mean. From now on

we setµ = 1 andg = 0 for simplicity.
In order to define a finite element discretization for (2.2), we introduce a family{Th}h>0 of

shape-regular conforming triangular meshes such thatΩ =
⋃

T∈Th
T for eachh > 0, where

h = maxT∈Th hT andhT is the diameter ofT .
Throughout the paper,C will denote a generic positive constant independent of the mesh

sizeh which may be different at different places. We also denote the standard Sobolev norm
and seminorm over a domainG by ‖ · ‖s,p,G and| · |s,p,G, respectively, with the convention that
‖ · ‖s,2,G = ‖ · ‖s,G and| · |s,2,G = | · |s,G.

Let Pr(T ) be the space of all polynomials of degree≤ r onT and let

W r
h = {vh ∈ H1(Ω) : vh|T ∈ Pr(T ) ∀T ∈ Th}.

Then the velocity and pressure finite element spaces are chosen to be

V h = (W 1
h ∩H1

0 (Ω))
2, Qh =W 1

h ∩ L2
0(Ω).

Since this pair does not satisfy the discrete inf-sup condition, Brezzi and Pitkäranta [1] consid-
ered the following stabilized form of (2.2): find(uh, ph) ∈ V h ×Qh such that

{
(∇uh,∇vh)Ω − (∇ · vh, ph)Ω = (f ,vh)Ω ∀vh ∈ V h,

(∇ · uh, qh)Ω + Sh(ph, qh) = 0 ∀qh ∈ Qh,
(2.3)

where the stabilization term is given by

Sh(p, q) =
∑

T∈Th

γh2T (∇p,∇q)T

with a positive constantγ. We refer to [6–9] for the stabilization based on the local pressure or
pressure gradient projections which does not involve the mesh parameterhT or computation of
derivatives.

Remark 1. Due to the added stabilization term in (2.3), we have forqh ∈ Qh

(∇ · u, qh)Ω + Sh(p, qh) = Sh(p, qh) 6= 0,

which means that the formulation (2.3) is inconsistent. To make it consistent, one may add the
term

∑
T∈Th

γh2T (f ,∇q)T to the right-hand side of the second equation of (2.3) as is done in
the residual-based stabilization [2, 3, 5].
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The following a priori error estimate for (2.3) can be found,for example, in [8]

|||(u− uh, p− ph)||| ≤ Ch(‖u‖2,Ω + ‖p‖1,Ω) (2.4)

with respect to the the mesh-dependent norm

|||(v, q)||| =

(
‖∇v‖20,Ω + ‖q‖20,Ω +

∑

T∈Th

h2T ‖∇q‖
2
0,T

)1/2

.

Finally, we present the superconvergence result for the method (2.3) proved in [10] when
the triangulations{Th}h>0 satisfy the following condition introduced in [18]:

Condition (α, σ): For eachh > 0, the triangulationTh can be partitioned into two disjoint sets
T1,h ∪ T2,h with some positive constantsα andσ in such a way that

• every two adjacent triangles ofT1,h form anO(h1+α) parallelogram, i.e., the lengths
of any two opposite edges differ only byO(h1+α);

• the total area of
⋃

T∈T2,h
T isO(hσ).

Roughly speaking, this condition means that most pairs of adjacent elements inTh form almost
parallelograms and there are only a small number of exceptional elements.

Suppose that the triangulations{Th}h>0 satisfy the Condition(α, σ) and(u, p) ∈ (H3(Ω)∩
W 2,∞(Ω))2 ×H2(Ω). Let vI ∈W 1

h denote the standard nodal interpolant ofv ∈ C(Ω). Then
the following superconvergence result was established in [10]

|||(uI − uh, p− ph)||| ≤ Ch1+ρ(‖u‖3,Ω + ‖u‖2,∞,Ω + ‖p‖2,Ω) (2.5)

with ρ = min(α, 12 ,
σ
2 ). By comparing with (2.4), it should be observed that the pressure

approximation is itself superconvergent. This explains the numerically observedO(h3/2) con-
vergence of the pressure on uniform meshes (withα = σ = ∞).

3. ERROR ESTIMATOR BASED ON LOCAL POISSONPROBLEMS

In this section we propose and analyze an error estimator forthe stabilizedP1/P1 finite
element discretization (2.3) based on solution of local Poisson problems. This error estimator
is an adaptation of the one considered by Kay and Silvester [17] for the stabilizedP1/P0 finite
element method.

Let us introduce some notation needed in defining the error estimator. The normal derivative
of a vector-valued functionv on ∂T is denoted by ∂v

∂nT
:= (∇v)nT , wherenT is the unit

normal outward toT , and its jump across an interior edgee = ∂T ∩ ∂T ′ is defined as
[[
∂v

∂n

]]∣∣∣∣
e

=
∂v

∂nT

∣∣∣∣
T

+
∂v

∂nT ′

∣∣∣∣
T ′

.

Let ψe ∈ W 2
h be the quadratic bump function associated with the edgee such thatψe(me′) =

δe,e′ , whereme′ is the midpoint ofe′, and define the local space

P 0
2 (T ) = span{ψe : e ⊂ ∂T}.
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It is well known that the following useful inequalities holdfor v ∈ P 0
2 (T )

‖v‖0,T ≤ ChT ‖∇v‖0,T , ‖v‖0,∂T ≤ Ch
1/2
T ‖∇v‖0,T (3.1)

which can be derived by the standard scaling argument.
Now we are ready to define the local Poisson problems and the corresponding error estima-

tor.

Definition 1. For everyT ∈ Th, findεT ∈ (P 0
2 (T ))

2 such that for allv ∈ (P 0
2 (T ))

2,

(∇εT ,∇v)T = (f −∇ph,v)T −
1

2

〈[[
∂uh

∂n

]]
,v

〉

∂T\∂Ω

, (3.2)

and compute the error estimator

ηP =

( ∑

T∈Th

‖∇εT ‖
2
0,T

)1/2

+ ‖∇ · uh‖0,Ω.

The local problem (3.2) always has a unique solution becauseP 0
2 (T ) does not contain con-

stants. Besides, it decouples into two independent Poissonproblems which require solving
3× 3 matrix systems.

The local efficiency of the error estimatorηP can be derived by comparing it with the resid-
ual error estimator. To show thatηP is reliable, we make the following saturation assumption
which is similar to the one of Bank and Welfert [12]:

Saturation Assumption: Let (u2, p1) ∈ (W 2
h ∩ H1

0 (Ω))
2 × Qh be the Taylor–Hood finite

element approximation to(u, p). Then there is a constant0 ≤ β < 1 independent of the mesh
sizeh such that

‖∇(u− u2)‖0,Ω + ‖p− p1‖0,Ω ≤ β(‖∇(u− uh)‖0,Ω + ‖p− ph‖0,Ω). (3.3)

Observe that theP2/P1 finite element is adopted here, while the stabilizedP2/P2 finite
element is used in [12]. By the a priori error estimate (2.4) we expect that this assumption
holds for sufficiently smallh, at least whenu andp are regular.

In the following theorem we prove that the error estimatorηP is reliable and efficient in the
usual sense.

Theorem 3.1. Let fh be any piecewise polynomial approximation off . Then the following
local lower bound holds

‖∇εT ‖0,T + ‖∇ · uh‖0,T ≤ C(‖∇(u− uh)‖0,ωT
+ ‖p − ph‖0,ωT

+ hT ‖f − fh‖0,T ),

whereωT is the union ofT and those triangles sharing edges withT . Moreover, under the
saturation assumption (3.3), we have

‖∇(u− uh)‖0,Ω + ‖p − ph‖0,Ω ≤ CηP .
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Proof. Takingv = εT in (3.2) and applying the inequalities (3.1), we obtain

‖∇εT ‖0,T ≤ ChT ‖f −∇ph‖0,T + Ch
1/2
T

∥∥∥∥
[[
∂uh

∂n

]]∥∥∥∥
0,∂T\∂Ω

.

Since the right-hand side represents the standard residualerror estimator, it can be further
bounded as in the proof of Theorem 3 of [15]. Besides, we have

‖∇ · uh‖0,T = ‖∇ · (uh − u)‖0,T ≤ 2‖∇(u− uh)‖0,T .

This proves the first result.
On the other hand, ifw ∈ (W 2

h ∩H
1
0 (Ω))

2 vanishes at the vertices ofTh, then the integration
by parts yields

(f ,w)Ω − (∇uh,∇w)Ω + (∇ ·w, ph)Ω =
∑

T∈Th

(∇εT ,∇w)T .

Hence, for allv ∈ (W 2
h ∩H1

0 (Ω))
2 andq ∈ Qh, it holds that

(∇(u2 − uh),∇v)Ω − (∇ · v, p1 − ph)Ω

= (f ,v)Ω − (∇uh,∇v)Ω + (∇ · v, ph)Ω

= (f ,v − vI)Ω − (∇uh,∇(v − vI))Ω + (∇ · (v − vI), ph)Ω

=
∑

T∈Th

(∇εT ,∇(v − vI))T

(∇ · (u2 − uh), q)Ω = −(∇ · uh, q)Ω

sincev−vI ∈ (W 2
h ∩H

1
0 (Ω))

2 vanishes at the vertices ofTh. By stability of the Taylor–Hood
element and the inequality‖∇(v − vI)‖0,Ω ≤ C‖∇v‖0,Ω, we obtain

‖∇(u2 − uh)‖0,Ω + ‖p1 − ph‖0,Ω ≤ C

{( ∑

T∈Th

‖∇εT ‖
2
0,T

)1/2

+ ‖∇ · uh‖0,Ω

}
= CηP .

Finally, combining the saturation assumption (3.3) and thetriangle inequality gives

‖∇(u− uh)‖0,Ω + ‖p − ph‖0,Ω ≤
1

1− β
(‖∇(u2 − uh)‖0,Ω + ‖p1 − ph‖0,Ω),

from which the second result follows. �

Now we suppose that the triangulations{Th}h>0 satisfy the Condition(α, σ) and establish

the asymptotic exactness of the first term
(∑

T∈Th
‖∇εT ‖

2
0,T

)1/2
. Following the techniques

of [19, 20], we introduce an auxiliary function defined in a similar way toεT : for givenw ∈
(H2(ωT ))

2, let q
w
∈ (P 0

2 (T ))
2 be such that for allv ∈ (P 0

2 (T ))
2,

(∇q
w
,∇v)T = (−∆w,v)T −

1

2

〈[[
∂wI

∂n

]]
,v

〉

∂T\∂Ω

. (3.4)

Recall thatwI ∈ (W 1
h )

2 denotes the standard nodal interpolant ofw.
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The following lemma generalizes the result of [19] for uniform meshes and has the same
form as Lemma 6.4 and (6.15) of [20] given for the equilibrated residual method. The proof
goes in almost the same way as in [20] and is given here for the reader’s convenience.

Lemma 3.2. For everyT ∈ Th, we have

‖∇q
w
‖0,T ≤ ChT ‖w‖2,ωT

. (3.5)

If T ∈ Th has no boundary edges and all triangles ofωT belong toT1,h, then we have for
w ∈ (H3(ωT ))

2

‖∇(w −wI)−∇q
w
‖0,T ≤ Ch

1+min(α,1)
T ‖w‖3,ωT

. (3.6)

Proof. Since[[∂w∂n ]] = 0 on∂T \ ∂Ω for w ∈ (H2(ωT ))
2, the equation (3.4) becomes

(∇q
w
,∇v)T = (−∆w,v)T +

1

2

〈[[
∂

∂n
(w −wI)

]]
,v

〉

∂T\∂Ω

.

The first result (3.5) is obtained by takingv = q
w

and applying the interpolation error estimate
for w −wI and the inequalities (3.1).

Now we turn to the second result (3.6). Letz ∈ (P2(ωT ))
2. Then the integration by parts

give for allv ∈ (P 0
2 (T ))

2

(∇(z − zI − q
z
),∇v)T =

〈
∂

∂nT
(z − zI),v

〉

∂T

+
1

2

〈[[
∂zI

∂n

]]
,v

〉

∂T

=

〈
∂

∂nT
(z − {{zI}}),v

〉

∂T

=
∑

e⊂∂T

2

3
|e|

∂

∂nT
(z − {{zI}})(me) · v(me),

where{{v}}|e = 1
2(v|T + v|T ′) for e = ∂T ∩ ∂T ′ and|e| denotes the length ofe. By using the

estimate (see, for example, Lemma 7.1 of [20])
∣∣∇z(me)− {{∇zI}}|e

∣∣ ≤ Ch1+α
T |z|2,∞,ωT

,

it follows that

|(∇(z − zI − q
z
),∇v)T | ≤ Ch2+α

T |z|2,∞,ωT
‖v‖0,∞,T ≤ ChαT |z|2,ωT

‖v‖0,T

≤ Ch1+α
T |z|2,ωT

‖∇v‖0,T .

Takingv = z − zI − q
z
, we obtain

‖∇(z − zI − q
z
)‖0,T ≤ Ch1+α

T |z|2,ωT
. (3.7)

The results (3.5) and (3.7) lead to

‖∇(w −wI)−∇q
w
‖0,T ≤ ‖∇(w − z)−∇(w − z)I −∇q

w−z
‖0,T

+ ‖∇(z − zI − q
z
)‖0,T

≤ ChT ‖w − z‖2,ωT
+ Ch1+α

T |z|2,ωT
.
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Finally, choosez ∈ (P2(ωT ))
2 satisfying‖w−z‖2,ωT

≤ ChT‖w‖3,ωT
and note that‖z‖2,ωT

≤
C‖w‖3,ωT

. This proves the second result (3.6). �

Lemma 3.3. Let (u, p) be the solution of (2.1). Then we have for everyT ∈ Th

‖∇(q
u
− εT )‖0,T ≤ C(‖∇(uI − uh)‖0,ωT

+ hT ‖∇(p− ph)‖0,T ).

Proof. Substitutingf = −∆u+∇p in (3.2) and using the inequalities (3.1), we obtain for all
v ∈ (P 0

2 (T ))
2

(∇(q
u
− εT ),∇v)T = −(∇(p− ph),v)T −

1

2

〈[[
∂

∂n
(uI − uh)

]]
,v

〉

∂T\∂Ω

≤ C(‖∇(uI − uh)‖0,ωT
+ hT ‖∇(p− ph)‖0,T )‖∇v‖0,T .

The desired result is derived by takingv = q
u
− εT . �

With the aid of the previous two lemmas we are able to prove thefollowing result.

Theorem 3.4.Assume that the triangulations{Th}h>0 satisfy the Condition(α, σ) and(u, p) ∈
(H3(Ω) ∩W 2,∞(Ω))2 ×H2(Ω). Then we have

( ∑

T∈Th

‖∇(u− uh)−∇εT ‖
2
0,T

)1/2

≤ Ch1+ρ(‖u‖3,Ω + ‖u‖2,∞,Ω + ‖p‖2,Ω)

with ρ = min(α, 12 ,
σ
2 ). Moreover, if‖∇(u− uh)‖0,Ω ≥ Ch for some constantC > 0, then it

holds that ∣∣∣∣
ηP,1

‖∇(u− uh)‖0,Ω
− 1

∣∣∣∣ = O(hρ),

whereηP,1 :=
(∑

T∈Th
‖∇εT ‖

2
0,T

)1/2
.

Proof. The second result follows easily from the first result, as is shown in Theorem 5.3 of
[20], so we only give a proof for the first result.

The triangle inequality gives

‖∇(u− uh)−∇εT ‖0,T ≤ ‖∇(u− uI)−∇q
u
‖0,T

+ ‖∇(uI − uh)‖0,T + ‖∇(q
u
− εT )‖0,T .

Let T̃1,h ⊂ T1,h be the set of allT ∈ Th such that∂T ∩ ∂Ω = ∅ and all triangles ofωT belong
to T1,h. Then, by virtue of (3.6) and Lemma 3.3, we obtain forT ∈ T̃1,h

‖∇(u− uh)−∇εT ‖0,T ≤ Ch
1+min(α,1)
T ‖u‖3,ωT

+ C(‖∇(uI − uh)‖0,ωT
+ hT ‖∇(p − ph)‖0,T ).

ForT ∈ Th \ T̃1,h, the inequality (3.5) and Lemma 3.3 give

‖∇(u− uh)−∇εT ‖0,T ≤ ChT ‖u‖2,ωT

+ C(‖∇(uI − uh)‖0,ωT
+ hT ‖∇(p − ph)‖0,T ).
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Consequently,
∑

T∈Th

‖∇(u− uh)−∇εT ‖
2
0,T

≤ Ch2+2min(α,1)‖u‖23,Ω + Ch2
∑

T∈Th\T̃1,h

‖u‖22,ωT
+ C|||(uI − uh, p − ph)|||

2.

Furthermore, by the Condition(α, σ) we have
∑

T∈Th\T̃1,h

‖u‖22,ωT
≤

( ∑

T∈Th\T̃1,h

|ωT |

)
‖u‖22,∞,Ω ≤ Chmin(1,σ)‖u‖22,∞,Ω,

and the third term is bounded by invoking the superconvergence result (2.5). The proof is
completed by collecting the above results. �

4. ERROR ESTIMATOR BASED ON LOCAL STOKES PROBLEMS

In this section we analyze an error estimator based on solution of the following local Stokes
problems:

Definition 2. For everyT ∈ Th, find (ε∗T , e
∗
T ) ∈ (P 0

2 (T ))
2 × P0(T ) such that for all(v, s) ∈

(P 0
2 (T ))

2 × P0(T ),




(∇ε∗T ,∇v)T − (∇ · v, e∗T )T = (f −∇ph,v)T −
1

2

〈[[
∂uh

∂n

]]
,v

〉

∂T\∂Ω

(∇ · ε∗T , s)T = −(∇ · uh, s)T ,

(4.1)

and compute the error estimator

ηS =

{ ∑

T∈Th

(‖∇ε∗T ‖
2
0,T + ‖e∗T ‖

2
0,T )

}1/2

.

The local problem (4.1) can be viewed as a Stokes problem onT with a Neumann boundary
condition and require solving7 × 7 matrix systems. It is straightforward to prove the local
inf-sup condition

inf
q∈P0(T )

sup
v∈(P 0

2
(T ))2

(∇ · v, q)T
‖∇v‖0,T ‖q‖0,T

≥ mL > 0,

so the problem (4.1) is well-posed for everyT ∈ Th.
An error estimator of this type was first proposed by Verfürth [11] for the mini element who

used the quadratic bump and cubic bubble functions to solve the local Stokes problems. In
[12] Bank and Welfert considered the stabilized forms of thelocal Stokes problems using the
quadratic bump functions only for both the velocity and pressure errors. Our error estimator
uses theP 0

2 /P0 element and is very similar to the one of Kay and Silvester [17] (proposed for
the stabilizedP1/P0 finite element method) which uses theP 0

2 /P1 element.
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The following theorem shows thatηS is locally equivalent toηP . This, in particular, implies
that Theorem 3.1 is valid forηS as well as forηP .

Theorem 4.1. Let εT be defined by (3.2) and let(ε∗T , e
∗
T ) be defined by (4.1). Then we have

for everyT ∈ Th

C1(‖∇εT ‖0,T + ‖∇ · uh‖0,T ) ≤ ‖∇ε∗T ‖0,T + ‖e∗T ‖0,T ≤ C2(‖∇εT ‖0,T + ‖∇ · uh‖0,T ).

Proof. By (3.2) and (4.1), we have for(v, s) ∈ (P 0
2 (T ))

2 × P0(T )
{

(∇ε∗T ,∇v)T − (∇ · v, e∗T )T = (∇εT ,∇v)T

(∇ · ε∗T , s)T = −(∇ · uh, s)T .

Thus the right inequality is a direct consequence of the well-posedness of the local problem
(4.1). The left inequality follows easily by takingv = εT , s = ∇ · uh and then applying the
Cauchy–Schwarz inequality. �

Finally, we prove the following analogue of Theorem 3.4 which states that the velocity
component of the error estimatorηS is asymptotically exact.

Theorem 4.2. Under the assumptions of Theorem 3.4, we have
( ∑

T∈Th

‖∇(u− uh)−∇ε∗T ‖
2
0,T

)1/2

+

( ∑

T∈Th

‖e∗T ‖
2
0,T

)1/2

≤ Ch1+ρ(‖u‖3,Ω + ‖u‖2,∞,Ω + ‖p‖2,Ω) (4.2)

with ρ = min(α, 12 ,
σ
2 ). Moreover, if‖∇(u− uh)‖0,Ω ≥ Ch for some constantC > 0, then it

holds that ∣∣∣∣
ηS,1

‖∇(u− uh)‖0,Ω
− 1

∣∣∣∣ = O(hρ),

whereηS,1 :=
(∑

T∈Th
‖∇ε∗T ‖

2
0,T

)1/2
.

Proof. LetεT be defined by (3.2). By (3.2), (4.1) and the incompressibility condition∇·u = 0,
we have for(v, s) ∈ (P 0

2 (T ))
2 × P0(T ){

(∇(ε∗T − εT ),∇v)T − (∇ · v, e∗T )T = 0

(∇ · (ε∗T − εT ), s)T = (∇ · (u− uh − εT ), s)T .

Then it follows by the well-posedness of the local problem (4.1) that

‖∇(ε∗T − εT )‖0,T + ‖e∗T ‖0,T ≤ C‖∇(u− uh − εT )‖0,T

and thus

‖∇(u− uh)−∇ε∗T ‖0,T + ‖e∗T ‖0,T ≤ C‖∇(u− uh)−∇εT ‖0,T .

This proves the first result (4.2) by Theorem 3.4. The second result follows from (4.2), as stated
in the proof of Theorem 3.4. �
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Remark 2. The superconvergence result (2.5) and the estimate (4.2) indicates that the pressure

error ‖p − ph‖0,Ω and the pressure component
(∑

T∈Th
‖e∗T ‖

2
0,T

)1/2
of ηS are both of the

orderO(h1+ρ) under the assumptions of Theorem 3.4, so they becomes negligible compared
with their velocity counterparts ash→ 0. This leads to

∣∣∣∣
ηS(

‖∇(u− uh)‖
2
0,Ω + ‖p− ph‖

2
0,Ω

)1/2 − 1

∣∣∣∣ = O(hρ).

In other words,ηS is asymptotically exact with respect to the total error.
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