• Title/Summary/Keyword: Pipelined analog-to-digital converter

Search Result 27, Processing Time 0.026 seconds

A Design of ADC with Multi SHA Structure which for High Data Communication (고속 데이터 통신을 위한 다중Multi SHA구조를 갖는 ADC설계)

  • Kim, Sun-Youb
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1709-1716
    • /
    • 2007
  • In this paper, ADC with multi SHA structure is proposed for high speed operation. The proposed structure incorporates a multi SHA block that consists of multiple SHAs of identical characteristics in parallel to improve the conversion speed. The designed multi SHA is operated by non-overlapping clocks and the sampling speed can be improved by increasing the number of multiplexed SHAs. Pipelined A/D converter, applying the proposed structure, is designed to satisfy requirement of analog front-end of VDSL modem. The measured INL and DNL of designed A/D converter are $0.52LSB{\sim}-0.50LSB$ and $0.80LSB{\sim}-0.76LSB$, respectively. It satisfies the design specifications for VDSL modems. The simulated SNR is about 66dB which corresponds to a 10.7 bit resolution. The power consumption is 24.32mW.

A 1V 10b 30MS/s CMOS ADC Using a Switched-RC Technique (스위치-RC 기법을 이용한 1V 10비트 30MS/s CMOS ADC)

  • Ahn, Gil-Cho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.61-70
    • /
    • 2009
  • A 10b 30MS/s pipelined ADC operating under 1V power supply is presented. It utilizes a switched-RC based input sampling circuit and a resistive loop to reset the feedback capacitor in the multiplying digital-to-analog converter (MDAC) for the low-voltage operation. Cascaded switched-RC branches are used to achieve accurate grain of the MDAC for the first stage and separate switched-RC circuits are used in the sub-ADC to suppress the switching noise coupling to the MDAC input The measured differential and integral non-linearities of the prototype ADC fabricated in a 0.13${\mu}m$, CMOS process are less than 0.54LSB and 1.75LSB, respectively. The prototype ADC achieves 54.1dB SNDR and 70.4dB SFDR with 1V supply and 30MHz sampling frequency while consuming 17mW power.

An 8b 200 MHz 0.18 um CMOS ADC with 500 MHz Input Bandwidth (500 MHz의 입력 대역폭을 갖는 8b 200 MHz 0.18 um CMOS A/D 변환기)

  • 조영재;배우진;박희원;김세원;이승훈
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.312-320
    • /
    • 2003
  • This work describes an 8b 200 MHz 0.18 urn CMOS analog-to-digital converter (ADC) based on a pipelined architecture for flat panel display applications. The proposed ABC employs an improved bootstrapping technique to obtain wider input bandwidth than the sampling tate of 200 MHz. The bootstrapuing technique improves the accuracy of the input sample-and-hold amplifier (SHA) and the fast fourier transform (FFT) analysis of the SHA outputs shows the 7.2 effective number of bits with an input sinusoidal wave frequency of 500 MHz and the sampling clock of 200 MHz at a 1.7 V supply voltage. Merged-capacitor switching (MCS) technique increases the sampling rate of the ADC by reducing the number of capacitors required in conventional ADC's by 50 % and minimizes chip area simultaneously. The simulated ADC in a 0.18 um n-well single-poly quad-metal CMOS technology shows an 8b resolution and a 73 mW power dissipation at a 200 MHz sampling clock and a 1.7 V supply voltage.

The Design of High-Speed, High-Resolution D/A Converter for Digital Image Signal Processing with Deglitching Current Cell (글리치 방지 전류원을 이용한 고속 고정밀 디지탈 영상 신호 처리용 D/A 변환기 설계)

  • Lee, Seong-Dae;Jeong, Gang-Min
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.4
    • /
    • pp.469-478
    • /
    • 1994
  • In this paper, a high speed, high resolution information processing digital- analog converter was designed for high definition color graphic, digital image signal processing, HDTV. For high speed operation, matrix type current cell array, latch which is not use pipelined, and two dimensional structure decoder using transmission gate were designed. It is adopted to fast-conversion, low-power implementation and exhibited high performance at linearity and accuracy. To reduce silicon area and to maintain resolution, current cell array composed of weighted and non-weighted current cells. In this paper, deglitching current cell design for high accuracy, new switching algorithm assert to reduce switching error. It's This circuit dissipates 130W with a 5-V power supply, and operate above 100MHz with 10 bit resolution.

  • PDF

A3V 10b 33 MHz Low Power CMOS A/D Converter for HDTV Applications (HDTV 응용을 위한 3V 10b 33MHz 저전력 CMOS A/D 변환기)

  • Lee, Kang-Jin;Lee, Seung-Hoon
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.278-284
    • /
    • 1998
  • This paper describes a l0b CMOS A/D converter (ADC) for HDTV applications. The proposed ADC adopts a typical multi-step pipelined architecture. The proposed circuit design techniques are as fo1lows: A selective channel-length adjustment technique for a bias circuit minimizes the mismatch of the bias current due to the short channel effect by supply voltage variations. A power reduction technique for a high-speed two-stage operational amplifier decreases the power consumption of amplifiers with wide bandwidths by turning on and off bias currents in the suggested sequence. A typical capacitor scaling technique optimizes the chip area and power dissipation of the ADC. The proposed ADC is designed and fabricated in s 0.8 um double-poly double-metal n-well CMOS technology. The measured differential and integral nonlinearities of the prototype ADC show less than ${\pm}0.6LSB\;and\;{\pm}2.0LSB$, respectively. The typical ADC power consumption is 119 mW at 3 V with a 40 MHz sampling rate, and 320 mW at 5 V with a 50 MHz sampling rate.

  • PDF

A Merged-Capacitor Switching Technique for Sampling-Rate and Resolution Improvement of CMOS ADCs) (CMOS A/D 변환기의 샘플링 속도 및 해상도 향상을 위한 병합 캐패시터 스위칭 기법)

  • Yu, Sang-Min;Jeon, Yeong-Deuk;Lee, Seung-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.6
    • /
    • pp.35-41
    • /
    • 2000
  • This paper describes a merged-capacitor switching (MCS) technique to improve the signal Processing speed and resolution of CMOS analog-to-digital converters (ADCs). The proposed MCS technique improves a sampling rate by reducing the number of capacitors used in conventional pipelined ADCs. The ADC capacitor mismatch can be minimized without additional power consumption, die area, and the loss of sampling rate, when the size of each unit capacitor is increased as much as the number of capacitors reduced by the MCS technique. It is verified that the ADC resolution based on the proposed MCS technique is extended further by employing a conventional commutated feedback-capacitor switching (CFCS) technique.

  • PDF

A l0b 150 MSample/s 1.8V 123 mW CMOS A/D Converter (l0b 150 MSample/s 1.8V 123 mW CMOS 파이프라인 A/D 변환기)

  • Kim Se-Won;Park Jong-Bum;Lee Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.53-60
    • /
    • 2004
  • This work describes a l0b 150 MSample/s CMOS pipelined A/D converter (ADC) based on advanced bootsuapping techniques for higher input bandwidth than a sampling rate. The proposed ADC adopts a typical multi-step pipelined architecture, employs the merged-capacitor switching technique which improves sampling rate and resolution reducing by $50\%$ the number of unit capacitors used in the multiplying digital-to-analog converter. On-chip current and voltage references for high-speed driving capability of R & C loads and on-chip decimator circuits for high-speed testability are implemented with on-chip decoupling capacitors. The proposed AU is fabricated in a 0.18 um 1P6M CMOS technology. The measured differential and integral nonlinearities are within $-0.56{\~}+0.69$ LSB and $-1.50{\~}+0.68$ LSB, respectively. The prototype ADC shows the signal-to-noise-and-distortion ratio (SNDR) of 52 dB at 150 MSample/s. The active chip area is 2.2 mm2 (= 1.4 mm ${\times}$ 1.6 mm) and the chip consumes 123 mW at 150 MSample/s.