• Title/Summary/Keyword: Photoelectrochemical water splitting

Search Result 69, Processing Time 0.03 seconds

Hydrogen Production by Photoelectrochemical Water Splitting

  • Seo, H.W.;Kim, J. S.
    • Applied Science and Convergence Technology
    • /
    • v.27 no.4
    • /
    • pp.61-64
    • /
    • 2018
  • The basic principle and concept for hydrogen production via water-splitting process are introduced. In particular, recent research activities and their progress in the photoelectrochemical water-splitting process are investigated. The material perspectives of semiconducting photocatalysts are considered from metal oxides, including titanium oxides, to carbon compounds and perovskites. Various structural configurations, from conventional photoanodes with metal cathodes to tandem and nanostructures, are also studied. The pros and cons of each are described in terms of light absorption, charge separation/photoexcited electron-hole pair recombinations and further solar-to-hydrogen efficiency. In this research, we attempt to provide a broad view of up-to-date research and development as well as, possibly, future directions in the photoelectrochemical water-splitting field.

Photoelectrochemical Water-Splitting Cells for H2 Production (광전기화학적 수소 발생 전지의 연구 개발 현황)

  • Ahn, Kwang-Soon
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.331-336
    • /
    • 2009
  • This article introduces the research status for the photoelectrochemical $H_2$ production. Fundamentals to the photoelectrochemical water-splitting cells are given and technical issues, research status, and development trend are also reviewed.

Advanced Nano-Structured Materials for Photocatalytic Water Splitting

  • Chandrasekaran, Sundaram;Chung, Jin Suk;Kim, Eui Jung;Hur, Seung Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • The production of oxygen and hydrogen from solar water splitting has been considered to be an ultimate solution for energy and environmental issues, and over the past few years, nano-sized semiconducting metal oxides alone and with graphene have been shown to have great promise for use in photocatalytic water splitting. It is challenging to find ideal materials for photoelectrochemical water splitting, and these have limited commercial applicability due to critical factors, including their physico-chemical properties, the rate of charge-carrier recombination and limited light absorption. This review article discusses these main features, and recent research progress and major factors affect the performance of the water splitting reaction. The mechanism behind these interactions in transition metal oxides and graphene based nano-structured semiconductors upon illumination has been discussed in detail, and such characteristics are relevant to the design of materials with a superior photocatalytic response towards UV and visible light.

One-Dimensional Core/Shell Structured TiO2/ZnO Heterojunction for Improved Photoelectrochemical Performance

  • Ji, In-Ae;Park, Min-Joon;Jung, Jin-Young;Choi, Mi-Jin;Lee, Yong-Woo;Lee, Jung-Ho;Bang, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2200-2206
    • /
    • 2012
  • One-dimensional $TiO_2$ array grown on optically transparent electrode holds a promise as a photoelectrode for photoelectrochemical water splitting; however, its crystal structure is rutile, imposing constraints on the potent use of this nanostructure. To address this issue, a heterojunction with type-II band alignment was fabricated using atomic layer deposition (ALD) technique. One-dimensional core/shell structured $TiO_2$/ZnO heterojunction was superior to $TiO_2$ in the photoelectrochemical water splitting because of better charge separation and more favorable Fermi level. The heterojunction also possesses better light scattering property, which turned out to be beneficial even for improving the photoelectrochemical performance of semiconductor-sensitized solar cell.

Comparative Study of Undoped and Nickel-Doped Molybdenum Oxide Photoanodes for PEC Water Splitting

  • Garcia-Garcia, Matias
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.377-389
    • /
    • 2022
  • The current global energy supply depends heavily on fossil fuels. This makes technology such as direct water splitting from harvesting solar energy in photoelectrochemical (PEC) systems potentially attractive due to its a promising route for environmentally benign hydrogen production. In this study, undoped and nickel-doped molybdenum oxide photoanodes (called photoanodes S1 and S2 respectively) were synthesized through electrodeposition by applying -1.377 V vs Ag/AgCl (3 M KCl) for 3 hours on an FTO-coated glass substrate immersed in molibdatecitrate aqueous solutions at pH 9. Scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) were used for microstructural and compositional characterizations of the photoanodes. In addition, the optical and photoelectrochemical characterizations of these photoanodes were performed by UV-Visible spectroscopy, and linear scanning voltammetry (LSV) respectively. The results showed that all the photoanodes produced exhibit conductivity and catalytic properties that make them attractive for water splitting application in a photoelectrochemical cell. In this context, the photoanode S2 exhibited better photocatalytic activity than the photoanode S1. In addition, photoanode S2 had the lowest optical band-gap energy value (2.58 eV), which would allow better utilization of the solar spectrum.

Effect of Reduced Graphene Oxide in Photoanode on Photoelectrochemical Performance in Water Splitting for Hydrogen Production (수소생산을 위한 물 분해용 광전극에 도입된 환원된 산화그래핀이 광전기화학성능에 미치는 영향)

  • YOON, SANGHYEOK;DING, JIN-RUI;KIM, KYO-SEON
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.4
    • /
    • pp.329-334
    • /
    • 2016
  • Hydrogen is eco-friendly alternative energy source and the photoelectrochemical water splitting is believed to be one of the promising methods for hydrogen production. Many researchers have studied several potential photocatalysts to increase the photoelectochemical performance efficiency for hydrogen conversion. In this study, the GO (graphene oxide) was prepared by Tour's method and was dispersed in precursor solutions of $WO_3$ and $BiVO_4$. Those precursor solutions were spin-coated on FTO glass and several photocatalyst thin films of $WO_3$, $BiVO_4$ and $WO_3/BiVO_4$ were prepared by calcination. The morphologies of prepared photocatalyst thin films were measured by scanning electron microscope. The photoelectrochemical performances of photocatalyst thin films with rGO (reduced graphene oxide) and without rGO were analyzed systematically.

Photoelectrochemical characterization of surface-modified CuInS2 nanorod arrays prepared via template-assisted growth and transfer

  • Yang, Wooseok;Kim, Jimin;Oh, Yunjung;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.401-401
    • /
    • 2016
  • Although vertically aligned one-dimensional (1D) structure has been considered as efficient forms for photoelectrode, development of efficient 1D nanostructured photocathode are still required. In this sense, we recently demonstrated a simple fabrication route for CuInS2 (CIS) nanorod arrays from aqueous solution by template-assisted growth-and-transfer method and their feasibility as a photoelectrode for water splitting. In this study, we further evaluated the photoelectrochemical properties surface-modified CIS nanorod arrays. Surface modification with CdS and ZnS was performed by successive ion layer adsorption and reaction (SILAR) method, which is well known as suitable technique for conformal coating throughout nanoporous structure. With surface modification of CdS and ZnS, both photoelectrochemical performance and stability of CuInS2 nanorod arrays were improved by shifting of the flat-band potential, which was analyzed both onset potential and Mott-schottky plot.

  • PDF

Photoelectrochemical (PEC) Water Splitting using GaN-based Photoelectrode (GaN 기반 광전극을 이용한 광전기화학적 물분해 수소 생산)

  • Heo, Jiwon;Bae, Hyojung;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.13-20
    • /
    • 2021
  • GaN has shown good potential owing to its better chemical stability than other materials and tunable bandgap with materials such as InN and AlN. Tunable bandgap allows GaN to make the maximum utilization of the solar spectrum, thus improves the solar-to-hydrogen (STH) efficiency. In addition, GaN band gap contains the oxidation and reduction level of water, so it can split water without external voltage. However, STH efficiency using GaN itself is low and has been actively studied recently to improve it. In this thesis, we have summarized the studies related to the use of GaN as a photoelectrode for photoelectrochemical water splitting.

Promoting Photoelectrochemical Performance Through the Modulation of MoS2 Morphology (MoS2의 형상변조를 통한 광전기화학 성능 촉진)

  • Seo, Dong-Bum;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.30-35
    • /
    • 2022
  • The development of advanced materials to improve the efficiency of photoelectrochemical (PEC) water splitting paves the way for widespread renewable energy technologies. Efficient photoanodes with strong absorbance in visible light increases the effectiveness of solar energy conversion systems. MoS2 in a two-dimensional semiconductor that has excellent absorption performance in visible light and high catalytic activity, showing considerable potential as an agent of PEC water splitting. In this study, we successfully modulated the MoS2 morphology on indium tin oxide substrate by using the metalorganic chemical vapor deposition method, and applied the PEC application. The PEC photocurrent of the vertically grown MoS2 nanosheet structure significantly increased relative to that of MoS2 nanoparticles because of the efficient transfer of charge carriers and high-density active sites. The enhanced photocurrent was attributed to the efficient charge separation and improved light absorption of the MoS2 nanosheet structure. Meanwhile, the photocurrent property of thick nanosheets decreased because of the limit imposed by the diffusion lengths of carriers. This study proposes a valuable photoelectrode design with suitable nanosheet morphology for efficient PEC water splitting.

Tri-branched tri-anchoring organic dye for Visible light-responsive dye-sensitized photoelectrochemical water-splitting cells (염료감응형 광전기화학 물분해 전지용 Tri-branched tri-anchoring organic dye 개발)

  • Park, Jeong-Hyun;Kim, Jae-Hong;Ahn, Kwang-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.87-87
    • /
    • 2010
  • Photoelectrochemical (PEC) systems are promising methods of producing H2 gas using solar energy in an aqueous solution. The photoelectrochemical properties of numerous metal oxides have been studied. Among them, the PEC systems based on TiO2 have been extensively studied. However, the drawback of a PEC system with TiO2 is that only ultraviolet (UV) light can be absorbed because of its large band gap (3.2 - 3.4 eV). Two approaches have been introduced in order to use PEC cells in the visible light region. The first method includes doping impurities, such as nitrogen, into TiO2, and this technique has been extensively studied in an attempt to narrow the band gap. In comparison, research on the second method, which includes visible light water splitting in molecular photosystems, has been slow. Mallouk et al. recently developed electrochemical water-splitting cells using the Ru(II) complex as the visible light photosensitizer. the dye-sensitized PEC cell consisted of a dye-sensitized TiO2 layer, a Pt counter electrode, and an aqueous solution between them. Under a visible light (< 3 eV) illumination, only the dye molecule absorbed the light and became excited because TiO2 had the wide band gap. The light absorption of the dye was followed by the transfer of an electron from the excited state (S*) of the dye to the conduction band (CB) of TiO2 and its subsequent transfer to the transparent conducting oxide (TCO). The electrons moved through the wire to the Pt, where the water reduction (or H2 evolution) occurred. The oxidized dye molecules caused the water oxidation because their HOMO level was below the H2O/O2 level. Organic dyes have been developed as metal-free alternatives to the Ru(II) complexes because of their tunable optical and electronic properties and low-cost manufacturing. Recently, organic dye molecules containing multi-branched, multi-anchoring groups have received a great deal of interest. In this work, tri-branched tri-anchoring organic dyes (Dye 2) were designed and applied to visible light water-splitting cells based on dye-sensitized TiO2 electrodes. Dye 2 had a molecular structure containing one donor (D) and three acceptor (A) groups, and each ended with an anchoring functionality. In comparison, mono-anchoring dyes (Dye 1) were also synthesized. The PEC response of the Dye 2-sensitized TiO2 film was much better than the Dye 1-sensitized or unsensitized TiO2 films.

  • PDF