Browse > Article
http://dx.doi.org/10.5229/JECST.2016.7.1.7

Advanced Nano-Structured Materials for Photocatalytic Water Splitting  

Chandrasekaran, Sundaram (School of Chemical Engineering, University of Ulsan)
Chung, Jin Suk (School of Chemical Engineering, University of Ulsan)
Kim, Eui Jung (School of Chemical Engineering, University of Ulsan)
Hur, Seung Hyun (School of Chemical Engineering, University of Ulsan)
Publication Information
Journal of Electrochemical Science and Technology / v.7, no.1, 2016 , pp. 1-12 More about this Journal
Abstract
The production of oxygen and hydrogen from solar water splitting has been considered to be an ultimate solution for energy and environmental issues, and over the past few years, nano-sized semiconducting metal oxides alone and with graphene have been shown to have great promise for use in photocatalytic water splitting. It is challenging to find ideal materials for photoelectrochemical water splitting, and these have limited commercial applicability due to critical factors, including their physico-chemical properties, the rate of charge-carrier recombination and limited light absorption. This review article discusses these main features, and recent research progress and major factors affect the performance of the water splitting reaction. The mechanism behind these interactions in transition metal oxides and graphene based nano-structured semiconductors upon illumination has been discussed in detail, and such characteristics are relevant to the design of materials with a superior photocatalytic response towards UV and visible light.
Keywords
Photocatalyst; graphene nanocomposites; Water splitting; Hydrogen energy storage; Photoelectrochemical cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. H. Ng, A. wase, A. Kudo and R. Amal, J. Phys. Chem. Lett., 1, 2607(2010).   DOI
2 C. K. Chen, Y.-P. Shen, H. M. Chen, C.-J. Chen, T.-S. Chan, J.-F. Lee and and R.-S. Liu, Eur. J. Inorg. Chem., 2014, 773(2014).   DOI
3 Y. Hou, F. Zuo, A. Dagg and P. Feng, Nano Lett.,12, 6464(2012).   DOI
4 Z. Mou, S.Yin, M. Zhu, Y. Du, X. Wang, P. Yang, J. Zheng and C. Lu, Phys. Chem. Chem. Phys., 15, 2793(2013).   DOI
5 V. Dhand, K. Y. Rhee, H. J. Kim and D. H. Jung. J. Nanomater., 2013,14(2011).
6 S. Morales-Torres, L. M. Pastrana-Martínez, J. L. Figueiredo, J. L. Faria and A. M. T. Silva, Environ. Sci. Pollut. Res., 19, 3676(2012).   DOI
7 V. Štengl, S. Bakardjieva, T. M. Grygar, J. Bludská and M. Kormunda, Chem. Cent. J., 7, 41(2013).   DOI
8 L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu and X. Han, ACS Appl. Mater. Interfaces, 5, 3085(2013).   DOI
9 J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, S. Wang and L. Jiang, ACS Nano, 5, 590(2011).   DOI
10 W. Fan, Q. Lai, Q. Zhang and Y. Wang, J. Phys. Chem. C., 115, 10694(2011).   DOI
11 X.-Y. Zhang, H.-P. Li, X.-L Cui and Y. Lin, J. Mater. Chem., 20, 2801(2010).   DOI
12 Q. Xiang, B. Cheng and J. Yu, Angew. Chem. Int. Ed., 54, 11350(2015).   DOI
13 Z. Chen, S. Liu, M.-Q. Yang and Y.-J. Xu, ACS Appl. Mater. Interfaces, 5, 4309(2013).   DOI
14 S. Chandrasekaran, S. H. Hur, E. J. Kim, B. Rajagopalan, K. F. Babu, V. Senthilkumar, J. S. Chung, W. M. Choi and Y. S. Kim, RSC. Adv., 5, 29159(2015).   DOI
15 T. Peng, K. Li, P. Zeng, Q. Zhang and X. Zhang, J. Phys. Chem. C., 116, 22720(2012).   DOI
16 L. Jia, D.-H. Wang, Y.-X. Huang, A.-W. Xu and H.-Q. Yu, J. Phys. Chem. C., 115, 11466(2011).
17 Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan and J. R. Gong, J. Am. Chem. Soc., 133, 10878(2011).   DOI
18 C. G. Morales-Guio, M. T. Mayer, A. Yella, S. D. Tilley, M. Grätzel and X. Hu, J. Am. Chem. Soc., 137, 9927(2015).   DOI
19 A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong and Y. Liu, Adv. Mater., 22, 103(2010).   DOI
20 Y.-S. Hu, A. Kleiman-Shwarsctein, A. J. Forman, D. Hazen, J.-N. Park and E. W. McFarland, Chem. Mater., 20, 3803(2008).   DOI
21 K. Ehrensberger, A. Frei, P. Kuhn, H. R. Oswald and P. Hug, Solid State Ionics, 78, 151(1995).   DOI
22 H. J. Kim, S. H. Lee, A. A. Upadhye, I. Ro, M. I. Tejedor-Tejedor, M. A. Anderson, W. B. Kim and G. W. Huber, ACS Nano, 8, 10756(2014).   DOI
23 K. Kim, P. Thiyagarajan, H.-J. Ahn, S.-I Kim and J.-H. Jang, Nanoscale, 5, 6254(2013).   DOI
24 S. Chandrasekaran, S. H. Hur, W. M. Choi, J. S. Chung and E. J. Kim, Mater. Lett.,160, 92(2015).   DOI
25 Y.-C. Pu, G. Wang, K.-D Chang, Y. Ling, Y.-K. Lin, B. C. Fitzmorris, C.-M. Liu, X. Lu, Y. Tong, J. Z. Zhanf, Y.-J. Hsu and Y. Li, Nano Lett., 13, 3817(2013).   DOI
26 J. Gan, X. Lu, J. Wu, S. Xie, T. Zhai, M. Yu, Z. Zhang, Y. Mao, S. C. L. Wang, Y. Shen and Y. Tong, Sci. Rep., 3, 1(2013).
27 H. Gao, C. Liu, H. E. Jeong and P. Yang, ACS Nano., 6, 234(2012).   DOI
28 A. A. Tahir, K. U. Wijayantha, S. Saremi-Yarahmadi, M. Mazhar and V. McKee, Chem. Mater., 21, 3763(2009).   DOI
29 T. Wang, R. Lv, P. Zhang, C. Li and J. Gong, Nanoscale, 7, 77(2015).   DOI
30 M. Wu, W.-J. Chen, Y.-H. Shen, F.-Z. Huang, C.-H. Li and S.-K. Li, ACS Appl. Mater. Interfaces, 6, 15052(2014).   DOI
31 J. Gong, W. Pu, C. Yang and J. Zhang, Catal. Commun., 36, 89(2013).   DOI
32 C. K. Chua and M. Pumera, Chem. Soc. Rev., 43, 291(2014).   DOI
33 T.-F. Yeh, J. Cihláø, C.-Y. Chang, C. Cheng and H. Teng, Mater. Today, 16, 78(2013).   DOI
34 V. C. Ferreira, M. R. Nunes, A. J. Silvestre and O. C. Monteiro, Mater. Chem. Phys., 142, 355(2013).   DOI
35 Y. Li, Y. Xiang, S. Peng, X. Wang and L. Zhou, Electrochim. Acta., 87, 794(2013).   DOI
36 Z. Xu and J. Yu, Nanoscale, 3, 3138(2011).   DOI
37 L. Sun, J. Cai, Q. Wu, P. Huang, Y. Su and C. Lin, ýElectrochim. Acta., 108, 525(2013).   DOI
38 Y. Yu, H.-H. Wu, B.-L. Zhu, S.-R. Wang, W.-P. Huang, S.-H. Wu S-H and S.-M Zhang, Catal. Lett., 125,168(2008).   DOI
39 G. Yan, M. Zhang, J. Hou and J. Yang, Mater. Chem. Phys., 129, 553(2011).   DOI
40 N. Lu, H. Zhao, J. Li, X. Quan and S. Chen, Sep. Purif. Technol., 62, 668(2008).   DOI
41 Y. Qiu, S.-F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K.-H. Tsui, Y. Zhang, S. Yang and Z. Fan, Nano Lett., 14(4), 2123(2014).   DOI
42 J. H. Park, S. Kim and A. J. Bard, Nano Lett., 6(1), 24(2006).   DOI
43 H. Fei, Y. Yang, D. L. Rogow, X. Fan, S. R. Oliver. ACS Appl. Mater. Interfaces, 2, 974(2010).   DOI
44 S. C. Warren, K. Voïtchovsky, H. Dotan, C. M. Leroy, M. Cornuz, F. Stellacci, C. Hébert,A. Rothschild and M. Grätzel , Nat. Mater., 12, 842(2013).   DOI
45 W. Rüttinger and G. C. Dismukes, Chem. Rev., 97(1), 1(1997).   DOI
46 S. K. Mohapatra, S. E. John, S. Banerjee and M. Misra, Chem. Mater., 21, 3048(2009).   DOI
47 C. D. Bohn, A. K. Agrawal, E. C. Walter, M. D. Vaudin, A. A. Herzing, P. M. Haney, A. A. Talin and V. A. Szalai, J. Phys. Chem. C., 116, 15290(2012).   DOI
48 V. Chakrapani, J. Thangala and M. K. Sunkara, Int. J. Hydrogen Energy., 34, 9050(2009).   DOI
49 J. Li and N. Wu, Catal. Sci. Technol., 5, 1360(2015).   DOI
50 X. Chen, S. Shen, L. Guo and S. S. Mao, Chem. Rev., 110, 6503(2010).   DOI
51 X. Li, J. Yu, J. Low, Y. Fang, J. Xiao and X. Chen, J. Mater. Chem. A, 3, 2485(2015).   DOI
52 T.-F. Yeh, C.-Y. Teng, S.-J. Chen and H. Teng, Adv. Mater., 26, 3297(2014).   DOI
53 H. M. Chen, C. K. Chen, Y.-C. Chang, C.-W. Tsai, R.-S. Liu, S.-F. Hu, W.-S. Chang and K.-H. Chen, Angew. Chem., 122, 6102(2010).   DOI
54 X. Zhang, Y. Liu, S.-T. Lee, S. Yang and Z. Kang, Energy Environ. Sci., 7, 1409(2014).   DOI
55 P. Hartmann, D.-K. Lee, B. M. Smarsly and J. Janek, ACS Nano., 4, 3147(2010).   DOI
56 G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes. Nano Lett., 5(1), 191(2005).   DOI
57 I. S. Cho, Z. Chen, A. J. Forman, D. R. Kim, P. M. Rao, T. F. Jaramillo and X. Zheng, Nano Lett., 11(11), 4978(2011).   DOI
58 M. Paulose, K. Shankar, S. Yoriya, H. E. PrakasamE, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald and C. A. Grimes. J. Phys. Chem. B, 110, 16179(2006).   DOI
59 R. Dholam, N. Patel, M. Adami and A. Miotello, Int. J. Hydrogen Energy, 34, 5337(2009).   DOI
60 Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang and P. Wang, Nano Lett., 13(1), 14(2013).   DOI
61 A. Fujishima and K. Honda, Nature, 238, 37(1972).   DOI
62 Y. Fan, D. Li, M. Deng, Y. Luo and Q. Meng. Front. Chem. China, 4(4), 343(2009).   DOI
63 S. Shet, ECS Trans., 33, 15(2011).
64 S. Chandrasekaran, J. Nanoeng. Nanomanuf., 1, 242(2011).   DOI
65 L. Li, S. Chen, X. Wang, Y. Bando and D. Golberg, Energy Environ Sci., 5, 6040(2012).   DOI
66 S. F. Hasany, A. Rehman, R. Jose and I. Ahmed, AIP Conf. Proc., 1502, 298(2012).
67 S. Chandrasekaran, W. M. Choi, J. S. Chung, S. H. Hur and E. J. Kim, Mater. Lett., 136, 118(2014).   DOI
68 S. Chandrasekaran and R. D. K. Misra, Mater. Technol., 28, 228(2013).   DOI
69 M. Grätzel, Nature, 414, 338(2001).   DOI
70 S. Chandrasekaran, Sol. Energy Mater. Sol. Cells., 109, 220(2013).   DOI
71 J. Su, X. Feng, J. D. Sloppy, L. Guo and C. A. Grimes, Nano Lett., 11, 203(2011).   DOI