Browse > Article
http://dx.doi.org/10.33961/jecst.2022.00171

Comparative Study of Undoped and Nickel-Doped Molybdenum Oxide Photoanodes for PEC Water Splitting  

Garcia-Garcia, Matias (Department of Chemical Engineering, Biotechnology and Materials, Faculty of Physical and Mathematical Sciences, Universidad de Chile)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.3, 2022 , pp. 377-389 More about this Journal
Abstract
The current global energy supply depends heavily on fossil fuels. This makes technology such as direct water splitting from harvesting solar energy in photoelectrochemical (PEC) systems potentially attractive due to its a promising route for environmentally benign hydrogen production. In this study, undoped and nickel-doped molybdenum oxide photoanodes (called photoanodes S1 and S2 respectively) were synthesized through electrodeposition by applying -1.377 V vs Ag/AgCl (3 M KCl) for 3 hours on an FTO-coated glass substrate immersed in molibdatecitrate aqueous solutions at pH 9. Scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) were used for microstructural and compositional characterizations of the photoanodes. In addition, the optical and photoelectrochemical characterizations of these photoanodes were performed by UV-Visible spectroscopy, and linear scanning voltammetry (LSV) respectively. The results showed that all the photoanodes produced exhibit conductivity and catalytic properties that make them attractive for water splitting application in a photoelectrochemical cell. In this context, the photoanode S2 exhibited better photocatalytic activity than the photoanode S1. In addition, photoanode S2 had the lowest optical band-gap energy value (2.58 eV), which would allow better utilization of the solar spectrum.
Keywords
$MoO_x$ Films; Photoelectrochemistry; Water Splitting; Photoanodes; Oxygen Evolution Reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C.S. Moon and J.G. Han, Thin Solid Films, 2008, 516(19), 6560-6564.
2 M. Hjiri, F. Ghribi and L. El Mir, Sens. Transducers, 2014, 27(5), 198-201.
3 Y.Z. Dawood, M.H. Hassoni and M.S. Mohamad, Int. J. Pure Appl. Phy., 2014, 2(1), 1-7.
4 E.J. Podlaha and D. Landolt, J. Electrochem. Soc., 1996, 143(3), 885.   DOI
5 A. Marlot, P. Kern and D. Landolt, Electrochim. Acta, 2002, 48(1), 29-36.   DOI
6 V.P. Ananikov, ACS Catal., 2015, 5(3), 1964-1971.   DOI
7 A. Borgschulte, O. Sambalova, R. Delmelle, S. Jenatsch, R. Hany and F. Nuesch, Sci. Rep., 2017, 7(1), 1-9.   DOI
8 E. Shembel, R. Apostolova, V. Nagirny, I. Kirsanova, P. Grebenkin and P. Lytvyn, J. Solid State Electrochem., 2005, 9(2), 96-105.   DOI
9 V.V. Kuznetsov, M.R. Pavlov, S.A. Chepeleva and V.N. Kudryavtsev, Rus. J. Electrochem., 2005, 41(1), 75-81.   DOI
10 V.V. Kuznetsov, M.R. Pavlov, K.V. Kuznetsov and V.N. Kudryavtsev, Rus. J. Electrochem., 2003, 39(12), 1338-1341.   DOI
11 V.V. Kuznetsov, N.V. Morozova and V.N. Kudryavtsev, Rus. J. Electrochem., 2006, 42(6), 665-669.   DOI
12 E. Chassaing, K. Vu Quang and R. Wiart, J. Appl. Electrochem., 1989, 19(6), 839-844.   DOI
13 M. Popczyk and B. Losiewicz, In Solid State Phenomena, Trans Tech Publications Ltd., 2015, 228, 277-282.
14 J. Baltrusaitis, B. Mendoza-Sanchez, V. Fernandez, R. Veenstra, N. Dukstiene, A. Roberts and N. Fairley, Appl. Surf. Sci., 2015, 326, 151-161.   DOI
15 J. Yan, G. Wu, N. Guan, L. Li, Z. Li and X. Cao, Phys. Chem. Chem. Phys., 2013, 15(26), 10978-10988.
16 A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart and N.S. McIntyre, Surf. Sci., 2006, 600(9), 1771-1779.   DOI
17 M.C. Oliveira and A.B. do Rego, J. Alloys Compd., 2006, 425(1-2), 64-68.   DOI
18 P. Jena, J. Phys. Chem. Lett, 2011, 2(3), 206-211.   DOI
19 M. Roser and E. Ortiz-Ospina, World population growth, Our World in Data, 2017.
20 R. Lindsey, Climate change: Atmospheric carbon dioxide, 2020.
21 T. Bak, J. Nowotny, M. Rekas and C. Sorrell, Int. J. Hydrog. Energy, 2002, 27(10), 991-1022.
22 Z. Dong, D. Ding, T. Li and C. Ning, Appl. Surf. Sci., 2018, 443, 321-328.   DOI
23 M. Ahmed and I. Dincer, Int. J. Hydrog. Energy, 2019, 44(5), 2474-2507.   DOI
24 R.S. Patil, M.D. Uplane and P.S. Patil, Appl. Surf. Sci., 2006, 252(23), 8050-8056.   DOI
25 M.K.M. Ali, K. Ibrahim, O.S. Hamad, M.H. Eisa, M.G. Faraj and F. Azhari, Rom. J. Phys, 2011, 56(5-6), 730-741.
26 H.J. Neef, Energy, 2009, 34(3), 327-333.   DOI
27 N. Dukstiene, D. Sinkeviciute and A. Guobiene, Cent. Eur. J. Chem., 2012, 10(4), 1106-1118.
28 N. Dukstiene and Sinkeviciute, J. Solid State Electrochem., 2013, 17, 1175-1184.   DOI
29 O. Adedokun, Int. J. Eng. Sci. Appl., 2018, 2(3), 88-97.
30 C.G. Granqvist, Sol. Energy Mater. Sol. Cells, 2007, 91(17), 1529-1598.   DOI
31 M. Antonietti and K. Mullen (Eds.), Chemical synthesis and applications of graphene and carbon materials, John Wiley & Sons, 2016.
32 M. Tayebi and B.K. Lee, Renew. Sustain. Energy Rev., 2019, 111, 332-343.
33 D.O. Scanlon, G.W. Watson, D.J. Payne, G.R. Atkinson, R.G. Egdell and D.S.L. Law, J. Phys. Chem. C, 2010, 114(10), 4636-4645.   DOI
34 R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo and F. Levy, J. Appl. Phys., 1994, 75(6), 2945-2951.   DOI
35 L. Meda and L. Abbondanza, Rev. Adv. Sci. Eng., 2013, 2(3), 200-207.   DOI
36 R.J. Abe, Photochem. Photobiol. C. Photochem. Rev., 2010, 11(4), 179-209.   DOI
37 J. Miao, H.B. Yang, S.Y. Khoo and B. Liu, Nanoscale, 2013, 5(22), 11118-11124.   DOI
38 G.J. Conibeer and B.S. Richards, Int. J. Hydrog. Energy, 2007, 32(14), 2703-2711.   DOI
39 X. Shi, I.Y. Choi, K. Zhang, J. Kwon, D.Y. Kim, J.K. Lee and J.H. Park, Nat. commun., 2014, 5, 4775.   DOI