Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.1.30

Promoting Photoelectrochemical Performance Through the Modulation of MoS2 Morphology  

Seo, Dong-Bum (Department of Materials Science & Engineering, Chungnam National University)
Kim, Eui-Tae (Department of Materials Science & Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.32, no.1, 2022 , pp. 30-35 More about this Journal
Abstract
The development of advanced materials to improve the efficiency of photoelectrochemical (PEC) water splitting paves the way for widespread renewable energy technologies. Efficient photoanodes with strong absorbance in visible light increases the effectiveness of solar energy conversion systems. MoS2 in a two-dimensional semiconductor that has excellent absorption performance in visible light and high catalytic activity, showing considerable potential as an agent of PEC water splitting. In this study, we successfully modulated the MoS2 morphology on indium tin oxide substrate by using the metalorganic chemical vapor deposition method, and applied the PEC application. The PEC photocurrent of the vertically grown MoS2 nanosheet structure significantly increased relative to that of MoS2 nanoparticles because of the efficient transfer of charge carriers and high-density active sites. The enhanced photocurrent was attributed to the efficient charge separation and improved light absorption of the MoS2 nanosheet structure. Meanwhile, the photocurrent property of thick nanosheets decreased because of the limit imposed by the diffusion lengths of carriers. This study proposes a valuable photoelectrode design with suitable nanosheet morphology for efficient PEC water splitting.
Keywords
$MoS_2$; photoelectrochemical; chemical vapor deposition; morphology;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. B. Seo, S. Yoo, V. Dongquoc, T. N. Trung and E. T. Kim, J. Alloys Compd., 888, 161587 (2021).   DOI
2 H. He, J. Lin, W. Fu, X. Wang, H. Wang, Q. Zeng, Q. Gu, Y. Li, C. Yan, B. K. Tay, C. Xue, X. Hu, S. T. Pantelides, W. Zhou and Z. Liu, Adv. Energy Mater., 6, 1600464 (2016).   DOI
3 A. Gupta, T. Sakthivel and S. Seal, Progr. Mater. Sci., 73, 44 (2015).   DOI
4 T. N. Trung, D. B. Seo, N. D. Quang, D. J. Kim and E. T. Kim, Electrochim. Acta, 260, 150 (2018).   DOI
5 Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li and T. W. Lin, Adv. Mater., 24, 2320 (2012).   DOI
6 J. Jeon, S. K. Jang, S. M. Jeon, G. Yoo, Y. H. Jang, J. H. Park and S. Lee, Nanoscale, 7, 1688 (2015).   DOI
7 P. Zuo, L. Jiang, X. Li, B. Li, P. Ran, X. Li, L. Qu and Y. Lu, ACS Sustainable Chem. Eng., 6, 7704 (2018).   DOI
8 J. Zhu, Z. Wang, H. Yu, N. Li, J. Zhang, J. Meng, M. Liao, J. Zhao, X. Lu, L. Du, R. Yang, D. Shi, Y. Jiang and G. Zhang, J. Am. Chem. Soc., 139, 10216 (2017).   DOI
9 G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen and M. Chhowalla, Nano Lett., 11, 5111 (2011).   DOI
10 K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang and J. Ye, ACS Nano, 8, 7078 (2014).   DOI
11 Y. C . Kim, V. T. Nguyen, S. Lee, J. Y. Park and Y. H. Ahn, ACS Appl. Mater. Interfaces, 10, 5771 (2018).   DOI
12 S. U. M. Khan, M. Al-Shahry and W. B. Ingler Jr., Science, 297, 2243 (2002).   DOI
13 Y. Pi, Z. Li, D. Xu, J. Liu, Y. Li, F. Zhang, G. Zhang, W. Peng and X. Fan, ACS Sustain. Chem. Eng., 5, 5175 (2017).   DOI
14 J. Dong, X. Zhang, J. Huang, S. Gao, J. Mao, J. Cai, Z. Chen, S. Sathasivam, C. J. Carmalt and Y. Lai, Electrochem. Commun., 93, 152 (2018).   DOI
15 D. B. Seo, T. N. Trung, D. O. Kim, D. V. Duc, S. Hong, Y. Sohn, J. R. Jeong and E. T. Kim, Nano-Micro Lett., 12, 172 (2020).   DOI
16 M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis, Chem. Rev., 110, 6446 (2010).   DOI
17 D. B. Seo, M. S. Kim, T. N. Trung and E. T. Kim, Electrochim. Acta, 364, 137164 (2020).   DOI
18 Q. Lu, Y. Yu, Q. Ma, B. C hen and H. Zhang, Adv. Mater., 28, 1917 (2016).   DOI
19 T. C. Dang, V. T. Dang, T. D. Nguyen, T. H. Truong, M. T. Man, T. T. H. Bui, T. K. C. Tran, D. L. Tran, P. D. Truong, C. K. Nguyen, V. C. Nguyen, D. B. Seo and E. T. Kim, Mater. Sci. Semicond. Process., 121, 105308 (2021).   DOI
20 A. Ali, F. A. Mangrio, X. Chen, Y. Dai, K. Chen, X. Xu, R. Xia and L. Zhu, Nanoscale, 11, 7813 (2019).   DOI
21 T. D. Nguyen, M. T. Man, M. H. Nguyen, D. B. Seo and E. T. Kim, Mater. Res. Express, 6, 085070 (2019).   DOI
22 D. B. Seo, T. N. Trung, S. S. Bae and E. T. Kim, Nanomaterials, 11, 1585 (2021).   DOI
23 K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang and J. Ye, ACS Nano, 8, 7078 (2014).   DOI
24 Q. Ding, B. Song, P. Xu and S. Jin, Chem, 1, 699 (2016).   DOI
25 G. Zhang, H. Liu, J. Qu and J. Li, Energy Environ. Sci., 9, 1190 (2016).   DOI
26 K. Chang, X. Hai, H. Pang, H. Zhang, L. Shi, G. Liu, H. Liu, G. Zhao, M. Li and J. Ye, Adv. Mater., 28, 10033 (2016).   DOI
27 D. B. Seo and E. T. Kim, Korean J. Mater. Res., 31, 92 (2021).   DOI
28 K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller and J. Park, Nature, 520, 656 (2015).   DOI
29 C. Yim, M. O'Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney and G. S. Duesberg, Appl. Phys. Lett., 104, 103114 (2014).   DOI
30 D. B. Seo, S. Kim, T. N. Trung, D. J. Kim and E. T. Kim, J. Alloys Compd., 770, 686 (2019).   DOI
31 X. Ren, X. Qi, Y. Shen, S. Xiao, G. Xu, Z. Zhang, Z. Huang and J. Zhong, J. Phys. D: Appl. Phys., 49, 315304 (2016).   DOI
32 M. A. Hassan, M. W. Kim, M. A. Johar, A. Waseem, M. K. Kwon and S. W. Ryu, Sci. Rep., 9, 20141 (2019).   DOI
33 M. Velicky, M. A. Bissett, C. R. Woods, P. S. Toth, T. Georgiou, I. A. Kinloch, K. S. Novoselov and R. A. W. Dryfe, Nano Lett., 16, 2023 (2016).   DOI