DOI QR코드

DOI QR Code

Promoting Photoelectrochemical Performance Through the Modulation of MoS2 Morphology

MoS2의 형상변조를 통한 광전기화학 성능 촉진

  • Seo, Dong-Bum (Department of Materials Science & Engineering, Chungnam National University) ;
  • Kim, Eui-Tae (Department of Materials Science & Engineering, Chungnam National University)
  • 서동범 (충남대학교 공과대학 신소재공학과) ;
  • 김의태 (충남대학교 공과대학 신소재공학과)
  • Received : 2021.12.07
  • Accepted : 2021.12.29
  • Published : 2022.01.27

Abstract

The development of advanced materials to improve the efficiency of photoelectrochemical (PEC) water splitting paves the way for widespread renewable energy technologies. Efficient photoanodes with strong absorbance in visible light increases the effectiveness of solar energy conversion systems. MoS2 in a two-dimensional semiconductor that has excellent absorption performance in visible light and high catalytic activity, showing considerable potential as an agent of PEC water splitting. In this study, we successfully modulated the MoS2 morphology on indium tin oxide substrate by using the metalorganic chemical vapor deposition method, and applied the PEC application. The PEC photocurrent of the vertically grown MoS2 nanosheet structure significantly increased relative to that of MoS2 nanoparticles because of the efficient transfer of charge carriers and high-density active sites. The enhanced photocurrent was attributed to the efficient charge separation and improved light absorption of the MoS2 nanosheet structure. Meanwhile, the photocurrent property of thick nanosheets decreased because of the limit imposed by the diffusion lengths of carriers. This study proposes a valuable photoelectrode design with suitable nanosheet morphology for efficient PEC water splitting.

Keywords

Acknowledgement

This work was supported by research fund of Chungnam National University.

References

  1. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis, Chem. Rev., 110, 6446 (2010). https://doi.org/10.1021/cr1002326
  2. Q. Ding, B. Song, P. Xu and S. Jin, Chem, 1, 699 (2016). https://doi.org/10.1016/j.chempr.2016.10.007
  3. D. B. Seo, M. S. Kim, T. N. Trung and E. T. Kim, Electrochim. Acta, 364, 137164 (2020). https://doi.org/10.1016/j.electacta.2020.137164
  4. D. B. Seo, S. Yoo, V. Dongquoc, T. N. Trung and E. T. Kim, J. Alloys Compd., 888, 161587 (2021). https://doi.org/10.1016/j.jallcom.2021.161587
  5. Q. Lu, Y. Yu, Q. Ma, B. C hen and H. Zhang, Adv. Mater., 28, 1917 (2016). https://doi.org/10.1002/adma.201503270
  6. T. C. Dang, V. T. Dang, T. D. Nguyen, T. H. Truong, M. T. Man, T. T. H. Bui, T. K. C. Tran, D. L. Tran, P. D. Truong, C. K. Nguyen, V. C. Nguyen, D. B. Seo and E. T. Kim, Mater. Sci. Semicond. Process., 121, 105308 (2021). https://doi.org/10.1016/j.mssp.2020.105308
  7. A. Ali, F. A. Mangrio, X. Chen, Y. Dai, K. Chen, X. Xu, R. Xia and L. Zhu, Nanoscale, 11, 7813 (2019). https://doi.org/10.1039/c8nr10320h
  8. D. B. Seo, T. N. Trung, D. O. Kim, D. V. Duc, S. Hong, Y. Sohn, J. R. Jeong and E. T. Kim, Nano-Micro Lett., 12, 172 (2020). https://doi.org/10.1007/s40820-020-00512-3
  9. T. D. Nguyen, M. T. Man, M. H. Nguyen, D. B. Seo and E. T. Kim, Mater. Res. Express, 6, 085070 (2019). https://doi.org/10.1088/2053-1591/ab208a
  10. D. B. Seo, T. N. Trung, S. S. Bae and E. T. Kim, Nanomaterials, 11, 1585 (2021). https://doi.org/10.3390/nano11061585
  11. H. He, J. Lin, W. Fu, X. Wang, H. Wang, Q. Zeng, Q. Gu, Y. Li, C. Yan, B. K. Tay, C. Xue, X. Hu, S. T. Pantelides, W. Zhou and Z. Liu, Adv. Energy Mater., 6, 1600464 (2016). https://doi.org/10.1002/aenm.201600464
  12. M. Velicky, M. A. Bissett, C. R. Woods, P. S. Toth, T. Georgiou, I. A. Kinloch, K. S. Novoselov and R. A. W. Dryfe, Nano Lett., 16, 2023 (2016). https://doi.org/10.1021/acs.nanolett.5b05317
  13. K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang and J. Ye, ACS Nano, 8, 7078 (2014). https://doi.org/10.1021/nn5019945
  14. A. Gupta, T. Sakthivel and S. Seal, Progr. Mater. Sci., 73, 44 (2015). https://doi.org/10.1016/j.pmatsci.2015.02.002
  15. G. Zhang, H. Liu, J. Qu and J. Li, Energy Environ. Sci., 9, 1190 (2016). https://doi.org/10.1039/c5ee03761a
  16. D. B. Seo and E. T. Kim, Korean J. Mater. Res., 31, 92 (2021). https://doi.org/10.3740/MRSK.2021.31.2.92
  17. T. N. Trung, D. B. Seo, N. D. Quang, D. J. Kim and E. T. Kim, Electrochim. Acta, 260, 150 (2018). https://doi.org/10.1016/j.electacta.2017.11.089
  18. K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller and J. Park, Nature, 520, 656 (2015). https://doi.org/10.1038/nature14417
  19. Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li and T. W. Lin, Adv. Mater., 24, 2320 (2012). https://doi.org/10.1002/adma.201104798
  20. J. Jeon, S. K. Jang, S. M. Jeon, G. Yoo, Y. H. Jang, J. H. Park and S. Lee, Nanoscale, 7, 1688 (2015). https://doi.org/10.1039/C4NR04532G
  21. C. Yim, M. O'Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney and G. S. Duesberg, Appl. Phys. Lett., 104, 103114 (2014). https://doi.org/10.1063/1.4868108
  22. P. Zuo, L. Jiang, X. Li, B. Li, P. Ran, X. Li, L. Qu and Y. Lu, ACS Sustainable Chem. Eng., 6, 7704 (2018). https://doi.org/10.1021/acssuschemeng.8b00579
  23. J. Zhu, Z. Wang, H. Yu, N. Li, J. Zhang, J. Meng, M. Liao, J. Zhao, X. Lu, L. Du, R. Yang, D. Shi, Y. Jiang and G. Zhang, J. Am. Chem. Soc., 139, 10216 (2017). https://doi.org/10.1021/jacs.7b05765
  24. K. Chang, X. Hai, H. Pang, H. Zhang, L. Shi, G. Liu, H. Liu, G. Zhao, M. Li and J. Ye, Adv. Mater., 28, 10033 (2016). https://doi.org/10.1002/adma.201603765
  25. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen and M. Chhowalla, Nano Lett., 11, 5111 (2011). https://doi.org/10.1021/nl201874w
  26. K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang and J. Ye, ACS Nano, 8, 7078 (2014). https://doi.org/10.1021/nn5019945
  27. D. B. Seo, S. Kim, T. N. Trung, D. J. Kim and E. T. Kim, J. Alloys Compd., 770, 686 (2019). https://doi.org/10.1016/j.jallcom.2018.08.151
  28. Y. C . Kim, V. T. Nguyen, S. Lee, J. Y. Park and Y. H. Ahn, ACS Appl. Mater. Interfaces, 10, 5771 (2018). https://doi.org/10.1021/acsami.7b16177
  29. S. U. M. Khan, M. Al-Shahry and W. B. Ingler Jr., Science, 297, 2243 (2002). https://doi.org/10.1126/science.1075035
  30. X. Ren, X. Qi, Y. Shen, S. Xiao, G. Xu, Z. Zhang, Z. Huang and J. Zhong, J. Phys. D: Appl. Phys., 49, 315304 (2016). https://doi.org/10.1088/0022-3727/49/31/315304
  31. Y. Pi, Z. Li, D. Xu, J. Liu, Y. Li, F. Zhang, G. Zhang, W. Peng and X. Fan, ACS Sustain. Chem. Eng., 5, 5175 (2017). https://doi.org/10.1021/acssuschemeng.7b00518
  32. J. Dong, X. Zhang, J. Huang, S. Gao, J. Mao, J. Cai, Z. Chen, S. Sathasivam, C. J. Carmalt and Y. Lai, Electrochem. Commun., 93, 152 (2018). https://doi.org/10.1016/j.elecom.2018.07.008
  33. M. A. Hassan, M. W. Kim, M. A. Johar, A. Waseem, M. K. Kwon and S. W. Ryu, Sci. Rep., 9, 20141 (2019). https://doi.org/10.1038/s41598-019-56807-y