Browse > Article
http://dx.doi.org/10.5757/ASCT.2018.27.4.61

Hydrogen Production by Photoelectrochemical Water Splitting  

Seo, H.W. (Department of Physics, Jeju National University)
Kim, J. S. (Department of Physics, Jeju National University)
Publication Information
Applied Science and Convergence Technology / v.27, no.4, 2018 , pp. 61-64 More about this Journal
Abstract
The basic principle and concept for hydrogen production via water-splitting process are introduced. In particular, recent research activities and their progress in the photoelectrochemical water-splitting process are investigated. The material perspectives of semiconducting photocatalysts are considered from metal oxides, including titanium oxides, to carbon compounds and perovskites. Various structural configurations, from conventional photoanodes with metal cathodes to tandem and nanostructures, are also studied. The pros and cons of each are described in terms of light absorption, charge separation/photoexcited electron-hole pair recombinations and further solar-to-hydrogen efficiency. In this research, we attempt to provide a broad view of up-to-date research and development as well as, possibly, future directions in the photoelectrochemical water-splitting field.
Keywords
Photoelectrochemistry; Water-splitting; Hydrogen production; Photocatalyst; Solar-to-hydrogen efficiency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Fujito, H. Kunioku, D. Kato, H. Suzuki, M. Higashi, H. Kageyama, and R. Abe, J. Am. Chem. Soc. 138, 2082 (2016).   DOI
2 J. G. Lee, J. M. Hwang, H. J. Hwang, O. S. Jeon, J. S. Jang, O. C. Kwon, Y. Y. Lee, B. C. Han, and Y. G. Shul, J. Am. Chem. Soc. 138, 3541 (2016).   DOI
3 J. Luo, J. H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N. G. Park, S. D. Tilley, H. J. Fan, and M. Graetzel, Science 345,1593 (2014).   DOI
4 A. Vilanova, T. Lopes, C. Spenke, M. Wullenkord, and A. Mendes, Energy Storage Mater. 13, 175 (2018)   DOI
5 J. Su, L. Guo, N. Bao, and C. A. Grimes, Nano Lett. 11, 1928 (2011).   DOI
6 Y. Li, T. Takata, D. K. Cha, K. Takanabe, T. Minegishi, J. Kubota, and K. Domen, Adv. Mater. 25, 125(2013).   DOI
7 J. Luo, L. Steier, M.-K. Son, M. Schreier, M. T. Mayer, and M. Gratzel, Nano Lett. 16, 1848 (2016).   DOI
8 J. Liu, M. Dai, J. Wu, Y. Hu, Q. Zhang, J. Cui, Y. Wang, H. H. Tan, and Y. Wu, Science Bulletin 63, 194 (2018).   DOI
9 C. Hao, W. Wang, R. Zhang, B, Zou, and H. Shi, Sol. Energy Mater. Sol. Cells 174, 132 (2018).   DOI
10 F. Cao, W. Tian, and L. Li, J. Mater. Sci. Tech 34, 899 (2018).   DOI
11 F. Xu, J. Mei, M. Zheng, D. Bai, D. Wu, Z. Cao, and K. Jiang, J. Alloy Comp 693, 1124 (2017).   DOI
12 J. Verne, L'Ile Mysterieuse (Pierre-Jules Hetzel, France, 1874)
13 Office of Energy Efficiency & Renewable Energy, https://www.energy.gov/eere/fuelcells/ (accessed 6. 5, 2018)
14 DOE report: Progress in Hydrogen and Fuel Cells, DOE/EE-1647 (2017).
15 H. Cavendish, Philosophical Trans. 56, 141 (1766).   DOI
16 A. Kudo, Pure Appl. Chem. 79, 1917 (2007).   DOI
17 N. S. Lewis, and D. G. Nocera, Proc. Natl. Acad. Sci. U.S.A. 103, 15729 (2006).   DOI
18 M. Pagliaro, and A. G. Konstandopoulos, Solar Hydrogen: Fuel of the Future (Royal society of chemistry, Cambridge, 2012).
19 J. Jia, L. C. Seitz, J. D. Benck, Y. Huo, Y. Chen, J. W. D. Ng, T. Bilir, J. S. Harris, and T. F. Jaramillo, Nature Com. 7,13237 (2016).   DOI
20 J. F. Zhu and M. Zach, Curr Opin Colloid Interface Sci. 14, 260 (2009).   DOI
21 B. D. Alexander, P.J. Kulesza, I. Rutkowska, R. Solarska, and J. Augustynski J. Mater. Chem, 18 2298 (2008).   DOI
22 Z. Shi, X. Wen, Z. Guan, D. Gao, W. Luo, and Z. Zou, Ann. Phys. 358, 236 (2015).   DOI
23 M. Sarnowska, K. Bienkowski, P.J. Barczuk, R. Solarska, and J. Augustynski, Adv. Energy Mater. 6, 1600526 (2016).   DOI
24 J. Y. Zheng, S. I. Son, T. K. Van, and Y. S. Kang, RSC Adv. 5, 36307 (2015).   DOI
25 L. Wu, L. -K. Tsui, N. Swami, and G. Zangari, J. Phys. Chem. C. 114, 11551 (2010)   DOI
26 E. P. Melian, O. G. Diaz, A. O. Mendez, C. R. Lopez, M. N. Suarez, J. M. D. Rodriguez, J. A. Navio, D. F. Hevia, and J. P. Pena, Int J. Hydrogen Energy 38, 2144 (2013).   DOI
27 L. Yang, W. Wang, H. Zhang, S. Wang, M. Zhang, G. He, J. Lv, K. Zhu, and Z. Sun, Sol. Energy. Mater. Sol. Cells 165, 17 (2017)   DOI
28 G. Li, N. M. Dimitrijevic, L. Chen, T. Rajh, and K. A. Gray, J. Phys. Chem. C 112, 19040 (2008).   DOI
29 A. Fujishima, and K. Honda, Nature 238, 37 (1972).   DOI
30 N. L. Wu, and M. S. Lee, Int J. Hydrogen Energy 29, 1601 (2004).   DOI
31 H. W. Park, Y. S. Park, W. Y. Kim, and W. Y. Choi, J. Photochem. Photobiol. C 15, 1 (2013).   DOI
32 N. R. Khalid, E. Ahmed, Z. Hong, Y. Zhang, M. Ullah, and M. Ahmed, Ceram. Int. 39 3569 (2013).   DOI
33 S. U. M. Khan, M. Al-Shahry, and W. B. Ingler Jr., Science 297, 2243 (2002).   DOI
34 R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293, 269 (2001).   DOI
35 T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, Appl. Phys. Lett. 81, 454. (2002).   DOI
36 R. Asahi, T. Morikawa, H. Irie, and T. Ohwaki, Chem. Rev. 114, 9824 (2014)   DOI
37 X. Lv, L. Tao, M. Cao, X. Xiao, M. Wang, and Y. Shen, Nano Energy 44, 411 (2018).   DOI
38 K. Zhang, W. Zhou, L. Chi, X. Zhang, W. Hu, B. Jiang, K. Pan, G. Tian, and Z. Jiang, Chem. Sus. Chem. 9, 2841 (2016)   DOI
39 S. Patnaik, S. Martha, and K. M. Parida, RSC Adv. 6, 46929 (2016).   DOI
40 Y. Ito, W. Cong, T. Fujita, Z. Tang, and M. Chen, Angew. Chem. Int. Ed. Engl. 54, 2131 (2015).   DOI
41 X. Gong, S. Liu, C. Ouyang, P. Strasser, and R. Yang, ACS Catal. 5, 920 (2015).   DOI
42 S. Pei, and H. M Cheng, Carbon 50, 3210 (2012).   DOI
43 T. F. Yeh, J. M. Syu, C. Cheng, T. H. Chang, and H. S. Teng, Adv. Funct. Mater. 20, 2255 (2010).   DOI
44 J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, and Y. Shao-Horn, Science 334, 1383 (2011).   DOI