DOI QR코드

DOI QR Code

Photoelectrochemical (PEC) Water Splitting using GaN-based Photoelectrode

GaN 기반 광전극을 이용한 광전기화학적 물분해 수소 생산

  • Heo, Jiwon (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Bae, Hyojung (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Ha, Jun-Seok (Department of Advanced Chemicals & Engineering, Chonnam National University)
  • 허지원 (전남대학교 화학공학부) ;
  • 배효정 (전남대학교 광전자융합기술연구소) ;
  • 하준석 (전남대학교 화학공학부)
  • Received : 2021.03.07
  • Accepted : 2021.03.30
  • Published : 2021.03.30

Abstract

GaN has shown good potential owing to its better chemical stability than other materials and tunable bandgap with materials such as InN and AlN. Tunable bandgap allows GaN to make the maximum utilization of the solar spectrum, thus improves the solar-to-hydrogen (STH) efficiency. In addition, GaN band gap contains the oxidation and reduction level of water, so it can split water without external voltage. However, STH efficiency using GaN itself is low and has been actively studied recently to improve it. In this thesis, we have summarized the studies related to the use of GaN as a photoelectrode for photoelectrochemical water splitting.

GaN은 III-V족 화합물 반도체로 밴드갭을 조절하는 것이 가능하고 화학적으로 안정하기 때문에 다른 물질에 비해 산성, 염기성 용액에서 부식이 적다. 또한 GaN의 밴드갭이 물의 산화·환원 준위를 포함하고 있어 외부전압 없이 물 분해가 가능하다는 장점이 있다. 하지만 GaN 자체만으로는 태양광-수소 변환 효율(solar-to-hydrogen conversion efficiency, STH)이 낮아 이를 개선하기 위해 최근 활발한 연구가 이루어지고 있다. 본 총설에서는 GaN을 PEC 물분해의 광전극으로 사용하기 위한 방법들과 연구에 대해 정리하였다.

Keywords

References

  1. N. Abas, A. Kalair, and N. Khan, "Review of fossil fuels and future energy technologies", Futures, 69, 31 (2015). https://doi.org/10.1016/j.futures.2015.03.003
  2. J. Hansen, R. Ruedy, M. Sato, and K. Lo, "Global surface temperature change", Rev. Geophys., 48, RG4004 (2010). https://doi.org/10.1029/2010rg000345
  3. M. E. Mann, Z. Zhang, M. K. Hughes, R. S. Bradley, S. K. Miller, S. Rutherford, and F. Ni, "Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia", PNAS, 105(36), 13252 (2008). https://doi.org/10.1073/pnas.0805721105
  4. A. Fujishima, K. Honda, "Electrochemical photolysis of water at a semiconductor electrode", Nature, 238(5358), 37 (1972). https://doi.org/10.1038/238037a0
  5. S. S. Kocha, M. W. Peterson, D. J. Arent, J. M. Redwing, M. A. Tischler, and J. A. Turner, "Electrochemical investigation of the gallium nitride-aqueous electrolyte interface", J. Electrochem. Soc., 142(12), L238 (1995). https://doi.org/10.1149/1.2048511
  6. T. Hisatomi, J. Kubota, and K. Domen, "Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting", Chem. Soc. Rev., 43(22), 7520 (2014). https://doi.org/10.1039/C3CS60378D
  7. H. j. Choi, S. H. Seo, and S. H. Lee, "Recent Research Trend in Organometal Halide Perovskite-Based Photoelectrodes for Efficient Solar Hydrogen Production (in Kor.)". Korean Ind. Chem. News, 24(1), 14 (2021).
  8. B.K. Min, "Hydrogen Production by Photoelectrochemical Cells (in Kor.)", Polymer Science and Technology, 19(3), 228 (2008).
  9. S. Y. Liu, J. K. Sheu, Y. C. Lin, S. J. Tu, F. W. Huang, M. L. Lee, and W. C. Lai, "Mn-doped GaN as photoelectrodes for the photoelectrolysis of water under visible light", Opt. Express, 20(S5), A678 (2012). https://doi.org/10.1364/OE.20.00A678
  10. N. Arai, N. Saito, H. Nishiyama, K. Domen, H. Kobayashi, K. Sato, and Y. Inoue, "Effects of divalent metal ion (Mg2+, Zn2+ and Be2+) doping on photocatalytic activity of ruthenium oxide-loaded gallium nitride for water splitting", Catalysis Today, 129(3-4), 407 (2007). https://doi.org/10.1016/j.cattod.2006.08.072
  11. K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, "Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells", Appl. Phys. Lett., 96(5), 052110 (2010). https://doi.org/10.1063/1.3304786
  12. M. Shimizu, Y. Kawaguchi, K. Hiramatsu, and N. Sawaki, "Metalorganic vapor phase epitaxy of thick InGaN on sapphire substrate", Jpn. J. Appl. Phys., 36(6R), 3381 (1997). https://doi.org/10.1143/JJAP.36.3381
  13. G. B. Stringfellow, "Microstructures produced during the epitaxial growth of InGaN alloys", Journal of Crystal Growth, 312(6), 735 (2010). https://doi.org/10.1016/j.jcrysgro.2009.12.018
  14. S. An, D. W. Jeon, J. Hwang, and Y. H. Ra, "High aspect-ratio InGaN nanowire photocatalyst grown by molecular beam epitaxy (in Kor.)", Journal of the Korean Crystal Growth and Crystal Technology, 29(4), 143 (2019).
  15. J. Kang, H. J. Choi, F. Ren, J. Ao, H. Li, Y. Li, & Liu, Z, "Fabrication of an InGaN/GaN nanotube-based photoanode using nano-imprint lithography and a secondary sputtering process for water splitting", Jpn. J. Appl. Phys., 58(8), 081001 (2019). https://doi.org/10.7567/1347-4065/ab293e
  16. J. Benton, J. Bai, and T. Wang, "Enhancement in solar hydrogen generation efficiency using a GaN-based nanorod structure", Appl. Phys. Lett., 102(17), 173905 (2013). https://doi.org/10.1063/1.4803926
  17. L. Ravi, K. Boopathi, P. Panigrahi, and B. Krishnan, "Growth of gallium nitride nanowires on sapphire and silicon by chemical vapor deposition for water splitting applications", Applied Surface Science, 449, 213 (2018). https://doi.org/10.1016/j.apsusc.2018.01.306
  18. J. H. Kang, S. H. Kim, M. Ebaid, J. K. Lee, and S. W. Ryu, "Efficient photoelectrochemical water splitting by a doping-controlled GaN photoanode coated with NiO cocatalyst", Acta materialia, 79, 188 (2014). https://doi.org/10.1016/j.actamat.2014.07.032
  19. S. H. Kim, M. Ebaid, J. H. Kang, and S. W. Ryu, "Improved efficiency and stability of GaN photoanode in photoelectrochemical water splitting by NiO cocatalyst", Applied surface science, 305, 638 (2014). https://doi.org/10.1016/j.apsusc.2014.03.151
  20. J. Kamimura, P. Bogdanoff, F. F. Abdi, J. Lahnemann, R. van de Krol, H. Riechert, and L. Geelhaar, "Photoelectrochemical properties of GaN photoanodes with cobalt phosphate catalyst for solar water splitting in neutral electrolyte", J. Phys. Chem. C, 121(23), 12540 (2017). https://doi.org/10.1021/acs.jpcc.7b02253
  21. H. Kim, H. Bae, S. W. Bang, S. Kim, S. H. Lee, S. W. Ryu, and J. S. Ha, "Enhanced photoelectrochemical stability of GaN photoelectrodes by Al2O3 surface passivation layer", Opt. Express, 27(4), A206 (2019). https://doi.org/10.1364/oe.27.00a206