Browse > Article
http://dx.doi.org/10.6117/kmeps.2021.28.1.013

Photoelectrochemical (PEC) Water Splitting using GaN-based Photoelectrode  

Heo, Jiwon (Department of Advanced Chemicals & Engineering, Chonnam National University)
Bae, Hyojung (Department of Advanced Chemicals & Engineering, Chonnam National University)
Ha, Jun-Seok (Department of Advanced Chemicals & Engineering, Chonnam National University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.28, no.1, 2021 , pp. 13-20 More about this Journal
Abstract
GaN has shown good potential owing to its better chemical stability than other materials and tunable bandgap with materials such as InN and AlN. Tunable bandgap allows GaN to make the maximum utilization of the solar spectrum, thus improves the solar-to-hydrogen (STH) efficiency. In addition, GaN band gap contains the oxidation and reduction level of water, so it can split water without external voltage. However, STH efficiency using GaN itself is low and has been actively studied recently to improve it. In this thesis, we have summarized the studies related to the use of GaN as a photoelectrode for photoelectrochemical water splitting.
Keywords
Gallium Nitride; Photoelectrode; Photoelectrochemical Water splitting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. j. Choi, S. H. Seo, and S. H. Lee, "Recent Research Trend in Organometal Halide Perovskite-Based Photoelectrodes for Efficient Solar Hydrogen Production (in Kor.)". Korean Ind. Chem. News, 24(1), 14 (2021).
2 B.K. Min, "Hydrogen Production by Photoelectrochemical Cells (in Kor.)", Polymer Science and Technology, 19(3), 228 (2008).
3 S. Y. Liu, J. K. Sheu, Y. C. Lin, S. J. Tu, F. W. Huang, M. L. Lee, and W. C. Lai, "Mn-doped GaN as photoelectrodes for the photoelectrolysis of water under visible light", Opt. Express, 20(S5), A678 (2012).   DOI
4 N. Arai, N. Saito, H. Nishiyama, K. Domen, H. Kobayashi, K. Sato, and Y. Inoue, "Effects of divalent metal ion (Mg2+, Zn2+ and Be2+) doping on photocatalytic activity of ruthenium oxide-loaded gallium nitride for water splitting", Catalysis Today, 129(3-4), 407 (2007).   DOI
5 K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, "Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells", Appl. Phys. Lett., 96(5), 052110 (2010).   DOI
6 M. Shimizu, Y. Kawaguchi, K. Hiramatsu, and N. Sawaki, "Metalorganic vapor phase epitaxy of thick InGaN on sapphire substrate", Jpn. J. Appl. Phys., 36(6R), 3381 (1997).   DOI
7 G. B. Stringfellow, "Microstructures produced during the epitaxial growth of InGaN alloys", Journal of Crystal Growth, 312(6), 735 (2010).   DOI
8 S. An, D. W. Jeon, J. Hwang, and Y. H. Ra, "High aspect-ratio InGaN nanowire photocatalyst grown by molecular beam epitaxy (in Kor.)", Journal of the Korean Crystal Growth and Crystal Technology, 29(4), 143 (2019).
9 J. Kang, H. J. Choi, F. Ren, J. Ao, H. Li, Y. Li, & Liu, Z, "Fabrication of an InGaN/GaN nanotube-based photoanode using nano-imprint lithography and a secondary sputtering process for water splitting", Jpn. J. Appl. Phys., 58(8), 081001 (2019).   DOI
10 J. Benton, J. Bai, and T. Wang, "Enhancement in solar hydrogen generation efficiency using a GaN-based nanorod structure", Appl. Phys. Lett., 102(17), 173905 (2013).   DOI
11 L. Ravi, K. Boopathi, P. Panigrahi, and B. Krishnan, "Growth of gallium nitride nanowires on sapphire and silicon by chemical vapor deposition for water splitting applications", Applied Surface Science, 449, 213 (2018).   DOI
12 J. H. Kang, S. H. Kim, M. Ebaid, J. K. Lee, and S. W. Ryu, "Efficient photoelectrochemical water splitting by a doping-controlled GaN photoanode coated with NiO cocatalyst", Acta materialia, 79, 188 (2014).   DOI
13 S. H. Kim, M. Ebaid, J. H. Kang, and S. W. Ryu, "Improved efficiency and stability of GaN photoanode in photoelectrochemical water splitting by NiO cocatalyst", Applied surface science, 305, 638 (2014).   DOI
14 J. Kamimura, P. Bogdanoff, F. F. Abdi, J. Lahnemann, R. van de Krol, H. Riechert, and L. Geelhaar, "Photoelectrochemical properties of GaN photoanodes with cobalt phosphate catalyst for solar water splitting in neutral electrolyte", J. Phys. Chem. C, 121(23), 12540 (2017).   DOI
15 H. Kim, H. Bae, S. W. Bang, S. Kim, S. H. Lee, S. W. Ryu, and J. S. Ha, "Enhanced photoelectrochemical stability of GaN photoelectrodes by Al2O3 surface passivation layer", Opt. Express, 27(4), A206 (2019).   DOI
16 S. S. Kocha, M. W. Peterson, D. J. Arent, J. M. Redwing, M. A. Tischler, and J. A. Turner, "Electrochemical investigation of the gallium nitride-aqueous electrolyte interface", J. Electrochem. Soc., 142(12), L238 (1995).   DOI
17 N. Abas, A. Kalair, and N. Khan, "Review of fossil fuels and future energy technologies", Futures, 69, 31 (2015).   DOI
18 J. Hansen, R. Ruedy, M. Sato, and K. Lo, "Global surface temperature change", Rev. Geophys., 48, RG4004 (2010).   DOI
19 M. E. Mann, Z. Zhang, M. K. Hughes, R. S. Bradley, S. K. Miller, S. Rutherford, and F. Ni, "Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia", PNAS, 105(36), 13252 (2008).   DOI
20 A. Fujishima, K. Honda, "Electrochemical photolysis of water at a semiconductor electrode", Nature, 238(5358), 37 (1972).   DOI
21 T. Hisatomi, J. Kubota, and K. Domen, "Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting", Chem. Soc. Rev., 43(22), 7520 (2014).   DOI