DOI QR코드

DOI QR Code

One-Dimensional Core/Shell Structured TiO2/ZnO Heterojunction for Improved Photoelectrochemical Performance

  • Ji, In-Ae (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Park, Min-Joon (Department of Chemical Engineering, Hanyang University) ;
  • Jung, Jin-Young (Department of Chemical Engineering, Hanyang University) ;
  • Choi, Mi-Jin (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Lee, Yong-Woo (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Lee, Jung-Ho (Department of Chemical Engineering, Hanyang University) ;
  • Bang, Jin-Ho (Department of Chemistry and Applied Chemistry, Hanyang University)
  • Received : 2012.02.21
  • Accepted : 2012.03.28
  • Published : 2012.07.20

Abstract

One-dimensional $TiO_2$ array grown on optically transparent electrode holds a promise as a photoelectrode for photoelectrochemical water splitting; however, its crystal structure is rutile, imposing constraints on the potent use of this nanostructure. To address this issue, a heterojunction with type-II band alignment was fabricated using atomic layer deposition (ALD) technique. One-dimensional core/shell structured $TiO_2$/ZnO heterojunction was superior to $TiO_2$ in the photoelectrochemical water splitting because of better charge separation and more favorable Fermi level. The heterojunction also possesses better light scattering property, which turned out to be beneficial even for improving the photoelectrochemical performance of semiconductor-sensitized solar cell.

Keywords

References

  1. Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15729-15735. https://doi.org/10.1073/pnas.0603395103
  2. Barreca, D.; Carraro, G.; Gombac, V.; Gasparotto, A.; Maccato, C.; Fornasiero, P.; Tondello, E. Adv. Funct. Mater. 2011, 21, 2611- 2623. https://doi.org/10.1002/adfm.201100242
  3. Maeda, K.; Domen, K. J. Phys. Chem. Lett. 2010, 1, 2655-2661. https://doi.org/10.1021/jz1007966
  4. Kitano, M.; Hara, M. J. Mater. Chem. 2010, 20, 627-641. https://doi.org/10.1039/b910180b
  5. Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253-278. https://doi.org/10.1039/b800489g
  6. Bang, J. H.; Helmich, R. J.; Suslick, K. S. Adv. Mater. 2008, 20, 2599-2603. https://doi.org/10.1002/adma.200703188
  7. Osterloh, F. E. Chem. Mater. 2008, 20, 35-54. https://doi.org/10.1021/cm7024203
  8. Fujishima, A.; Honda, K. Nature 1972, 238, 37-38. https://doi.org/10.1038/238037a0
  9. Chen, X.; Mao, S. S. Chem. Rev. 2007, 107, 2891-2959. https://doi.org/10.1021/cr0500535
  10. Liu, G.; Wang, L.; Yang, H. G.; Cheng, H.-M.; Lu, G. Q. J. Mater. Chem. 2010, 20, 831-843. https://doi.org/10.1039/b909930a
  11. Lee, K.; Kim, D.; Roy, P.; Paramasivam, I.; Birajdar, B. I.; Spiecker, E.; Schmuki, P. J. Am. Chem. Soc. 2010, 132, 1478- 1479. https://doi.org/10.1021/ja910045x
  12. Roy, P.; Das, C.; Lee, K.; Hahn, R.; Ruff, T.; Moll, M.; Schmuki, P. J. Am. Chem. Soc. 2011, 133, 5629-5631. https://doi.org/10.1021/ja110638y
  13. Yan, J.; Zhou, F. J. Mater. Chem. 2011, 21, 9406-9418. https://doi.org/10.1039/c1jm10274e
  14. Shankar, K.; Basham, J. I.; Allam, N. K.; Varghese, O. K.; Mor, G. K.; Feng, X.; Paulose, M.; Seabold, J. A.; Choi, K.-S.; Grimes, C. A. J. Phys. Chem. C 2009, 113, 6327-6359. https://doi.org/10.1021/jp809385x
  15. Li, S.; Zhang, G.; Guo, D.; Yu, L.; Zhang, W. J. Phys. Chem. C 2009, 113, 12759-12765. https://doi.org/10.1021/jp903037f
  16. Allam, N. K.; Poncheri, A. J.; El-Sayed, M. A. ACS Nano 2011, 5, 5056-5066. https://doi.org/10.1021/nn201136t
  17. Bang, J. H.; Kamat, P. V. Adv. Funct. Mater. 2010, 20, 1970-1976. https://doi.org/10.1002/adfm.200902234
  18. Wolcott, A.; Smith, W. A.; Kuykendall, T. R.; Zhao, Y.; Zhang, J. Z. Small 2009, 5, 104-111. https://doi.org/10.1002/smll.200800902
  19. Bak, T.; Nowotny, J.; Sucher, N. J.; Wachsman, E. J. Phys. Chem. C 2011, 115, 15711-15738. https://doi.org/10.1021/jp2027862
  20. Tena-Zaera, R.; Katty, A.; Bastide, S.; Levy-Clement, C. Chem. Mater. 2007, 19, 1626-1632. https://doi.org/10.1021/cm062390f
  21. Cocivera, M.; Darkowski, A.; Love, B. J. Electrochem. Soc. 1984, 131, 2514-2517. https://doi.org/10.1149/1.2115350
  22. Zhang, J.; Bang, J. H.; Tang, C.; Kamat, P. V. ACS Nano 2010, 4, 387-395. https://doi.org/10.1021/nn901087c
  23. Paramasivam, I.; Nah, Y.-C.; Das, C.; Shrestha, N. K.; Schmuki, P. Chem. Eur. J. 2010, 16, 8993-8997. https://doi.org/10.1002/chem.201000397
  24. Lin, Y.; Zhou, S.; Sheehan, S. W.; Wang, D. J. Am. Chem. Soc. 2011, 133, 2398-2401. https://doi.org/10.1021/ja110741z
  25. Shi, J.; Hara, Y.; Sun, C.; Anderson, M. A.; Wang, X. Nano Lett. 2011, 11, 3413-3419. https://doi.org/10.1021/nl201823u
  26. Su, J.; Guo, L.; Bao, N.; Grimes, C. A. Nano Lett. 2011, 11, 1928- 1933. https://doi.org/10.1021/nl2000743
  27. McDonald, K. J.; Choi, K.-S. Chem. Mater. 2011, 23, 4863-4869. https://doi.org/10.1021/cm202399g
  28. Lei, Y.; Zhao, G.; Liu, M.; Zhang, Z.; Tong, X.; Cao, T. J. Phys. Chem. C 2009, 113, 19067-19076. https://doi.org/10.1021/jp9071179
  29. Chen, D.; Zhang, H.; Hu, S.; Li, J. J. Phys. Chem. C 2007, 112, 117-122.
  30. Shaogui, Y.; Xie, Q.; Xinyong, L.; Yazi, L.; Shuo, C.; Guohua, C. Phys. Chem. Chem. Phys. 2004, 6, 659-664. https://doi.org/10.1039/b308336e
  31. Wang, J.; Liu, X.-L.; Yang, A.-L.; Zheng, G.-L.; Yang, S.-Y.; Wei, H.-Y.; Zhu, Q.-S.; Wang, Z.-G. Appl. Phys. A 2011, 103, 1099- 1103. https://doi.org/10.1007/s00339-010-6048-7
  32. Gerischer, H. J. Electrochem. Soc. 1966, 113, 1174-1182. https://doi.org/10.1149/1.2423779
  33. Wolcott, A.; Smith, W. A.; Kuykendall, T. R.; Zhao, Y.; Zhang, J. Z. Adv. Funct. Mater. 2009, 19, 1849-1856. https://doi.org/10.1002/adfm.200801363
  34. Kostedt; Ismail, A. A.; Mazyck, D. W. Ind. Eng. Chem. Res. 2008, 47, 1483-1487. https://doi.org/10.1021/ie071255p
  35. Yang, X.; Wolcott, A.; Wang, G.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y. Nano Lett. 2009, 9, 2331-2336. https://doi.org/10.1021/nl900772q
  36. Steinmiller, E. M. P.; Choi, K.-S. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 20633-20636. https://doi.org/10.1073/pnas.0910203106
  37. Paulauskas, I. E.; Katz, J. E.; Jellison, G. E., Jr.; Lewis, N. S.; Boatner, L. A. Thin Solid Films 2008, 516, 8175-8178. https://doi.org/10.1016/j.tsf.2008.04.026
  38. Feng, X.; Zhai, J.; Jiang, L. Angew. Chem. Int. Ed. 2005, 44, 5115- 5118. https://doi.org/10.1002/anie.200501337
  39. Gu, F.; Gai, L.; Shao, W.; Li, C.; Schmidt-Mende, L. Chem. Commun. 2011, 47, 8400-8402. https://doi.org/10.1039/c1cc12309b
  40. George, S. M. Chem. Rev. 2009, 110, 111-131.
  41. Bang, J. H.; Suslick, K. S. Adv. Mater. 2009, 21, 3186-3190. https://doi.org/10.1002/adma.200802309
  42. Subramanian, V.; Wolf, E. E.; Kamat, P. V. J. Am. Chem. Soc. 2004, 126, 4943-4950. https://doi.org/10.1021/ja0315199
  43. Jakob, M.; Levanon, H.; Kamat, P. V. Nano Lett. 2003, 3, 353- 358. https://doi.org/10.1021/nl0340071
  44. Smith, W.; Wolcott, A.; Fitzmorris, R. C.; Zhang, J. Z.; Zhao, Y. J. Mater. Chem. 2011, 21, 10792-10800. https://doi.org/10.1039/c1jm11629k
  45. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446-6473. https://doi.org/10.1021/cr1002326
  46. Zhang, J.; Tang, C.; Bang, J. H. Electrochem. Commun. 2010, 12, 1124-1128. https://doi.org/10.1016/j.elecom.2010.05.046
  47. Law, M.; Greene, L. E.; Radenovic, A.; Kuykendall, T.; Liphardt, J.; Yang, P. J. Phys. Chem. B 2006, 110, 22652-22663. https://doi.org/10.1021/jp0648644

Cited by

  1. Influence of Nanoporous Oxide Substrate on the Performance of Photoelectrode in Semiconductor-Sensitized Solar Cells vol.33, pp.12, 2012, https://doi.org/10.5012/bkcs.2012.33.12.4063
  2. Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition vol.43, pp.22, 2014, https://doi.org/10.1039/C3CS60370A
  3. Enhanced performance of PbS-sensitized solar cells via controlled successive ionic-layer adsorption and reaction vol.17, pp.15, 2015, https://doi.org/10.1039/C5CP00941C
  4. Synthesis and characterization of TiO2–ZnO core–shell nanograss hetero-structure and its application in dye-sensitized solar cell (DSSC) vol.26, pp.7, 2015, https://doi.org/10.1007/s10854-015-3005-4
  5. Improvement of the photocatalytic degradation property of atomic layer deposited ZnO thin films: the interplay between film properties and functional performances vol.3, pp.21, 2015, https://doi.org/10.1039/C5TA01637A
  6. layer: simple sol–gel preparation, and optical, photocatalytic and photoelectrochemical properties vol.3, pp.24, 2015, https://doi.org/10.1039/C5TA01087J
  7. superstructure as a multifunctional material for energy conversion and storage vol.3, pp.7, 2015, https://doi.org/10.1039/C4TA05988C
  8. Enhanced Photoelectrochemical Activity of ZnO-Coated TiO2 Nanotubes and Its Dependence on ZnO Coating Thickness vol.11, pp.1, 2016, https://doi.org/10.1186/s11671-016-1309-9
  9. Tuning The Photoactivity of Zirconia Nanotubes-Based Photoanodes via Ultrathin Layers of ZrN: An Effective Approach toward Visible-Light Water Splitting vol.120, pp.13, 2016, https://doi.org/10.1021/acs.jpcc.6b01144
  10. Comparative study of the properties of TiO2 nanoflower and TiO2-ZnO composite nanoflower and their application in dye-sensitized solar cells vol.23, pp.7, 2017, https://doi.org/10.1007/s11581-017-2010-4
  11. vol.6, pp.1, 2017, https://doi.org/10.1680/jbibn.16.00003
  12. Nanotubes from Anodic Oxidation Decorated with ZnO Nanostructures vol.161, pp.10, 2014, https://doi.org/10.1149/2.0431410jes
  13. TiO2–SrTiO3 composite photoanode: effect of strontium precursor concentration on the performance of dye-sensitized solar cells vol.125, pp.1, 2019, https://doi.org/10.1007/s00339-018-2344-4
  14. Atomic layer deposition grown MOx thin films for solar water splitting: Prospects and challenges vol.33, pp.1, 2012, https://doi.org/10.1116/1.4904729
  15. A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO 2 Nanowires for Superior Photocatalytic Performance vol.6, pp.None, 2012, https://doi.org/10.1038/srep30587