• Title/Summary/Keyword: Phase-locked Loop

Search Result 568, Processing Time 0.022 seconds

A New Islanding Detection Method using Phase-Locked Loop for Inverter-Interfaced Distributed Generators

  • Chung, Il-Yop;Moon, Seung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.165-171
    • /
    • 2007
  • This paper proposes a new islanding detection method for inverter-interfaced distributed generators (DG). To detect islanding conditions, this paper calculates the phase angle variation of the system voltage by using the phase-locked loop (PLL) in the inverter controllers. Because almost all inverter systems are equipped with the PLL, the implementation of this method is fairly simple and economical for inverter-interfaced DGs. The detection time can also be shortened by reducing communication delay between the relays and the DGs. The proposed method is based on the fact that islanding conditions result in the frequency and voltage variation of the islanded area. The variation depends on the amount of power mismatch. To improve the accuracy of the detection algorithm, this paper injects small low-frequency reactive power mismatch to the output power of DG.

A Study on Low Phase Noise Frequency Synthesizer Design with Compact Size for High Frequency Band (고주파용 소형 저 위상잡음 주파수 합성기 설계에 관한 연구)

  • Kim, Tae-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.450-457
    • /
    • 2012
  • In this paper, we designed low phase noise frequency synthesizer with compact size for High frequency band (Ku-band). The paper addresses merits and demerits of single loop and dual loop frequency synthesizer. The phase noise characteristics of the phase-locked loop frequency synthesizer were predicted based on the analysis for phase noise contribution of noise sources. The proposed model in this paper more accurately predicts the low phase noise frequency synthesizer with compact size for high frequency band.

Design of Low voltage High speed Phase Locked Loop (고속 저전압 위상 동기 루프(PLL) 설계)

  • Hwang, In-Ho;Cho, Sang-Bock
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.267-269
    • /
    • 2007
  • PLL(Phase Locked Loop) are widely used circuit technique in modern electronic systems. In this paper, We propose the low voltage and high speed PLL. We design the PFD(Phase Frequency Detector) by using TSPC (True Single Phase Clock) circuit to improve the performance and solve the dead-zone problem. We use CP(Charge Pump} and LP(Loop filter) for Negative feedback and current reusing in order to solve current mismatch and switch mismatch problem. The VCO(Voltage controlled Oscillator) with 5-stage differential ring oscillator is used to exact output frequency. The divider is implemented by using D-type flip flops asynchronous dividing. The frequency divider has a constant division ratio 32. The frequency range of VCO has from 200MHz to 1.1GHz and have 1.7GHz/v of voltage gain. The proposed PLL is designed by using 0.18um CMOS processor with 1.8V supply voltage. Oscillator's input frequency is 25MHz, VCO output frequency is 800MHz and lock time is 5us. It is evaluated by using cadence spectra RF tools.

  • PDF

Ultralow Intensity Noise Pulse Train from an All-fiber Nonlinear Amplifying Loop Mirror-based Femtosecond Laser

  • Dohyeon Kwon;Dohyun Kim
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.708-713
    • /
    • 2023
  • A robust all-fiber nonlinear amplifying loop-mirror-based mode-locked femtosecond laser is demonstrated. Power-dependent nonlinear phase shift in a Sagnac loop enables stable and power-efficient mode-locking working as an artificial saturable absorber. The pump power is adjusted to achieve the lowest intensity noise for stable long-term operation. The minimum pump power for mode-locking is 180 mW, and the optimal pump power is 300 mW. The lowest integrated root-mean-square relative intensity noise of a free-running mode-locked laser is 0.009% [integration bandwidth: 1 Hz-10 MHz]. The long-term repetition-rate instability of a free-running mode-locked laser is 10-7 over 1,000 s averaging time. The repetition-rate phase noise scaled at 10-GHz carrier is -122 dBc/Hz at 10 kHz Fourier frequency. The demonstrated method can be applied as a seed source in high-precision real-time mid-infrared molecular spectroscopy.

Performance Analysis of Adaptive Bandwidth PLL According to Board Design (보드 설계에 따른 Adaptive Bandwidth PLL의 성능 분석)

  • Son, Young-Sang;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.146-153
    • /
    • 2008
  • In this paper, a integrated phase-locked loop(PLL) as a clock multiphase generator for a high speed serial link is designed. The designed PLL keeps the same bandwidth and damping factor by using programmable current mirror in the whole operation frequency range. Also, the close-loop transfer function and VCO's phase-noise transfer function of the designed PLL are obtained with circuit netlists. The self impedance on board-mounted chip is calculated according to sizes and positions of decoupling capacitors. Especially, the detailed self-impedance analysis is carried out between frequency ranges represented the maximum gain in the close-loop transfer function and the maximum gain in the VCO's phase noise transfer function. We shows PLL's jitter characteristics by decoupling capacitor's sizes and positions from this result. The designed PLL has the wide operating range of 0.4GHz to 2GHz in operating voltage of 1.8V and it is designed 0.18-um CMOS process. The reference clock is 100MHz and PLL power consumption is 17.28mW in 1.2GHz.

Design of Dual loop PLL with low noise characteristic (낮은 잡음 특성을 가지기 위해 이중 루프의 구조를 가지는 위상고정루프 구현)

  • Choi, Young-Shig;Ahn, Sung-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.819-825
    • /
    • 2016
  • In this paper, a phase locked loop structure with parallel dual loop which have a different bandwidth has been proposed. The bandwidths depending on transfer functions are obtained through dual loops. Two different bandwidths of each loop are used to suppress noise on the operating frequency range. The proposed phase locked loop has two different voltage controlled oscillator gains to control two different wide and narrow loop filters. Furthermore, it has the locking status indicator to achieve an accurate locking condition. The phase margin of $58.2^{\circ}$ for wide loop and $49.4^{\circ}$ for narrow loop is designed for stable operation and the phase margin of $45^{\circ}$ is maintained during both loops work together. It has been designed with a 1.8V 0.18um complementary metal oxide semiconductor (CMOS) process. The simulation results show that the proposed phase locked loop works stably and generates a target frequency.

A Digital Phase-locked Loop design based on Minimum Variance Finite Impulse Response Filter with Optimal Horizon Size (최적의 측정값 구간의 길이를 갖는 최소 공분산 유한 임펄스 응답 필터 기반 디지털 위상 고정 루프 설계)

  • You, Sung-Hyun;Pae, Dong-Sung;Choi, Hyun-Duck
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.591-598
    • /
    • 2021
  • The digital phase-locked loops(DPLL) is a circuit used for phase synchronization and has been generally used in various fields such as communication and circuit fields. State estimators are used to design digital phase-locked loops, and infinite impulse response state estimators such as the well-known Kalman filter have been used. In general, the performance of the infinite impulse response state estimator-based digital phase-locked loop is excellent, but a sudden performance degradation may occur in unexpected situations such as inaccuracy of initial value, model error, and disturbance. In this paper, we propose a minimum variance finite impulse response filter with optimal horizon for designing a new digital phase-locked loop. A numerical method is introduced to obtain the measured value interval length, which is an important parameter of the proposed finite impulse response filter, and to obtain a gain, the covariance matrix of the error is set as a cost function, and a linear matrix inequality is used to minimize it. In order to verify the superiority and robustness of the proposed digital phase-locked loop, a simulation was performed for comparison and analysis with the existing method in a situation where noise information was inaccurate.

A 40 Gb/s Clock and Data Recovery Module with Improved Phase-Locked Loop Circuits

  • Park, Hyun;Kim, Kang-Wook;Lim, Sang-Kyu;Ko, Je-Soo
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.275-281
    • /
    • 2008
  • A 40 Gb/s clock and data recovery (CDR) module for a fiber-optic receiver with improved phase-locked loop (PLL) circuits has been successfully implemented. The PLL of the CDR module employs an improved D-type flip-flop frequency acquisition circuit, which helps to stabilize the CDR performance, to obtain faster frequency acquisition, and to reduce the time of recovering the lock state in the event of losing the lock state. The measured RMS jitter of the clock signal recovered from 40 Gb/s pseudo-random binary sequence ($2^{31}-1$) data by the improved PLL clock recovery module is 210 fs. The CDR module also integrates a 40 Gb/s D-FF decision circuit, demonstrating that it can produce clean retimed data using the recovered clock.

  • PDF

A Low-Jitter Phase-Locked Loop Based on a Charge Pump Using a Current-Bypass Technique

  • Moon, Yongsam
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.331-338
    • /
    • 2014
  • A charge-pump circuit using a current-bypass technique, which suppresses charge sharing and reduces the sub-threshold currents, helps to decrease phase-locked loop (PLL) jitter without resorting to a feedback amplifier. The PLL shows no stability issues and no power-up problems, which may occur when a feedback amplifier is used. The PLL is implemented in 0.11-${\mu}m$ CMOS technology to achieve 0.856-ps RMS and 8.75-ps peak-to-peak jitter, which is almost independent of ambient temperature while consuming 4 mW from a 1.2-V supply.

Phase-Locked Loop with Leakage and Power/Ground Noise Compensation in 32nm Technology

  • Kim, Kyung-Ki;Kim, Yong-Bin;Lee, Young-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.241-246
    • /
    • 2007
  • This paper presents two novel compensation circuits for leakage current and power supply noise (PSN) in phase locked loop (PLL) using a nanometer CMOS technology. The leakage compensation circuit reduces the leakage current of the charge pump circuit and the PSN compensation circuit decreases the effect of power supply variation on the output frequency of VCO. The PLL design is based on a 32nm predictive CMOS technology and uses a 0.9 V power supply voltage. The simulation results show that the proposed PLL achieves 88% jitter reduction at 440 MHz output frequency compared to the PLL without leakage compensator and its output frequency drift is little to 20% power supply voltage variations. The PLL has an output frequency range of 40 $M{\sim}725$ MHz with a multiplication range of 1-1023, and the RMS and peak-to-peak jitter are 5psec and 42.7 psec, respectively.