• Title/Summary/Keyword: Phase-Lock Loop

Search Result 138, Processing Time 0.03 seconds

A New Phase-Locked Loop System with the Controllable Output Phase and Lock-up Time

  • Vibunjarone, Vichupong;Prempraneerach, Yothin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1836-1840
    • /
    • 2003
  • This paper, we propose a new phase-locked loop (PLL) system with the controllable output phase, independent from the output frequency, and lock-up time. This PLL system has a dual control loop is described, the inner loop greatly improved VCO characteristic such as faster speed response as well as higher operation bandwidth, to minimize the effect of the VCO noise and the power supply variation and also get better linearity of VCO output. The main loop is the heart of this PLL which greatly improved the output frequency instability due to the external high frequency noise coupling to the input reference frequency also the main loop can control the output phase, independent from the output frequency, and reduce the lock-up time of the step frequency response. The experimental results confirm the validity of the proposed strategy.

  • PDF

A Multiple Gain Controlled Digital Phase and Frequency Detector for Fast Lock-Time (빠른 Lock-Time을 위한 다중 이득 제어 디지털 위상 주파수 검출기)

  • Hong, Jong-Phil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.46-52
    • /
    • 2014
  • This paper presents a multiple gain controlled digital phase and frequency detector with a fast lock-time. Lock-time of the digital PLL can be significantly reduced by applying proposed adaptive gain control technique. A loop gain of the proposed digital PLL is controlled by three conditions that are very large phase difference between reference and feedback signal, small phase difference and before lock-state, and after lock-state. The simulation result shows that lock-time of the proposed multiple gain controlled digital PLL is 100 times faster than that of the conventional structure with unit gain mode.

A Fast Lock and Low Jitter Phase Locked Loop with Locking Status Indicator (Locking 상태 표시기를 이용한 저잡음 고속 위상고정 루프)

  • Choi Young-Shig;Han Dae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.582-586
    • /
    • 2005
  • This paper presents a new structure of Phase Locked Loop(PLL) which changes its loop bandwidth according to the locking status. The proposed PLL consists of a conventional PLL and, Locking Status Indicator(LSI). The LSI decides the operating bandwidth of loop filler. When the PLL becomes out of lock, the PLL increases the loop bandwidth and achieves fast locking. When the PLL becomes in-lock, this PLL decreases the loop bandwidth and minimizes phase noise output. The PLL can achieve fast locking and low phase noise output at the same time. Proposed PLL's locking time is less than $40{\mu}s$ and spur is 76.1dBc. It is simulated by HSPICE in a Hynix CMOS $0.35{\mu}m$ Process.

A Lock-Time Improvement for an X-Band Frequency Synthesizer Using an Active Fast-Lock Loop Filter

  • Heo, Yun-Seong;Oh, Hyun-Seok;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.2
    • /
    • pp.105-112
    • /
    • 2011
  • In phase-locked frequency synthesizers, a fast-lock technique is frequently employed to overcome the trade-off between a lock-time and a spurious response. The function of fast-lock in a conventional PLL (Phased Lock Loop) IC (Integrated Circuit) is limited by a factor of 16, which is usually implemented by a scaling of charge pumper, and consequently a lock time improvement of a factor of 4 is possible using the conventional PLL IC. In this paper, we propose a novel external active fast-lock loop filter. The proposed loop filter provides, conceptually, an unlimited scaling of charge pumper current, and can overcome conventional trade-off between lock-time and spur suppression. To demonstrate the validity of our proposed loop-filter, we fabricated an X-band frequency synthesizer using the proposed loop filter. The loop filter in the synthesizer is designed to have a loop bandwidth of 100 kHz in the fast-lock mode and a loop bandwidth of 5 kHz in the normal mode, which corresponds to a charge pumper current change ratio of 400. The X-band synthesizer shows successful performance of a lock-time of below 10 ${\mu}sec$ and reference spur suppression below -64 dBc.

A Design of Battery Charger using Phase-Lock technique (Phase-Lock 기법을 이용한 Battery 충전기 설계)

  • Song, Eui-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.456-458
    • /
    • 1997
  • The phase-lock technique is applied to a three-phase semi-bridge type battery charger system. Using an inner fast dynamic loop, the phase-locked voltage control (PLVC) technique of three-phase semi-bridge converter is proposed to give a frequency synchronism and to reduce the subharmonics due to the unbalance of transformer or power line. To protect the power devices, the two stage soft-start, function with softly locking the phase and softly increasing the current is presented. As limiting the reference voltage of the inner voltage control loop, muti-lock phenomena are removed on the PLVC loop. A current limit function is also proposed to limit the current of battery and converter. The proposed controller is confirmed through experiment results.

  • PDF

A Stability-Secured Loop Bandwidth Controllable Frequency Synthesizer for Multi-Band Mobile DTV Tuners

  • Kim, Kyeong-Woo;Akram, Muhammad Abrar;Hwang, In-Chul
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.141-144
    • /
    • 2015
  • A broadband radio frequency synthesizer for multi-band, multi-standard mobile DTV tuners is proposed, it's loop bandwidth can be calibrated to optimize integrated phase noise performance without the problem of phase noise peaking. For this purpose, we proposed a new third-order scalable loop filter and a scalable charge pump circuit to minimize the variation in phase margin during calibration. The prototype phase-lock loop is fabricated in 180nm complementary metal-oxide semiconductor shows that it effectively prevents phase noise peaking from growing while the loop bandwidth increases by up to three times.

Design of Fractional-N Digital PLL for IoT Application (IoT 어플리케이션을 위한 분수분주형 디지털 위상고정루프 설계)

  • Kim, Shinwoong
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.800-804
    • /
    • 2019
  • This paper presents a dual-loop sub-sampling digital PLL for a 2.4 GHz IoT applications. The PLL initially performs a divider-based coarse lock and switches to a divider-less fine sub-sampling lock. It achieves a low in-band phase noise performance by enabling the use of a high resolution time-to-digital converter (TDC) and a digital-to-time converter (DTC) in a selected timing range. To remove the difference between the phase offsets of the coarse and fine loops, a phase offset calibration scheme is proposed. The phase offset of the fine loop is estimated during the coarse lock and reflected in the coarse lock process, resulting in a smooth transition to the fine lock with a stable fast settling. The proposed digital PLL is designed by SystemVerilog modeling and Verilog-HDL and fully verified with simulations.

A Fast Locking Dual-Loop PLL with Adaptive Bandwidth Scheme (루프 대역폭 조절기를 이용한 빠른 위상 고정 시간을 갖는 이중 루프 위상고정루프)

  • Song, Youn-Gui;Choi, Young-Shig
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.65-70
    • /
    • 2008
  • A novel fast locking dual-loop integer-N phase locked loop(PLL) with adaptive bandwidth scheme is presented. When the PLL is out-of-lock, bandwidth becomes much wider than 1/10 of channel spacing with the wide bandwidth loop. When the PLL is near in-lock, bandwidth becomes narrower than 1/10 of channel spacing with the narrow bandwidth loop. The proposed PLL is designed based on a $0.35{\mu}m$ CMOS process with a 3.3V supply voltage. Simulation results show the fast look time of $50{\mu}s$ for an 80MHz frequency jump in a 200KHz channel spacing PLL with almost 14 times wider bandwidth than the channel spacing.

An Analog Multi-phase DLL for Harmonic Lock Free (Harmonic Locking을 제거하기 위한 아날로그 Multi- phase DLL 설계)

  • 문장원;곽계달
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.281-284
    • /
    • 2001
  • This paper describes an analog multi-phase delay-locked loop (DLL) to solve the harmonic lock problem using current-starved inverter and shunt-capacitor delay cell. The DLL can be used not only as an internal clock buffer of microprocessors and memory It's but also as a multi-phase clock generator for gigabit serial interfaces. The proposed circuit was simulated in a 0.25${\mu}{\textrm}{m}$ CMOS technology to solve harmonic lock problem and to realize fast lock-on time and low-jitter we verified time interval less than 40 ps as the simulation results.

  • PDF

A 500 MHz-to-1.2 GHz Reset Free Delay Locked Loop for Memory Controller with Hysteresis Coarse Lock Detector

  • Chi, Han-Kyu;Hwang, Moon-Sang;Yoo, Byoung-Joo;Choe, Won-Jun;Kim, Tae-Ho;Moon, Yong-Sam;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.2
    • /
    • pp.73-79
    • /
    • 2011
  • This paper describes a reset-free delay-locked loop (DLL) for a memory controller application, with the aid of a hysteresis coarse lock detector. The coarse lock loop in the proposed DLL adjusts the delay between input and output clock within the pull-in range of the main loop phase detector. In addition, it monitors the main loop's lock status by dividing the input clock and counting its multiphase edges. Moreover, by using hysteresis, it controls the coarse lock range, thus reduces jitter. The proposed DLL neither suffers from harmonic lock and stuck problems nor needs an external reset or start-up signal. In a 0.13-${\mu}m$ CMOS process, post-layout simulation demonstrates that, even with a switching supply noise, the peak-to-peak jitter is less than 30 ps over the operating range of 500-1200 MHz. It occupies 0.04 $mm^2$ and dissipates 16.6 mW at 1.2 GHz.