• Title/Summary/Keyword: Phase Locked Loop

Search Result 567, Processing Time 0.032 seconds

A study on the Dual Digital Phase Locked Loop (Dual-Digital Phase-Locked Loop에 관한 연구)

  • 김수일;이상범;성상기;김중태;최승철
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1987.04a
    • /
    • pp.230-233
    • /
    • 1987
  • A Dual Disital Phase Locked Loop is analyzeddesigned and tested. Two specific confisurations are considered generations second and thisrd order DPLL’s and it is found using a computer simulation and verified therretically . As a result of computer simulation the characteristcof designed I-Dullis better than the at of P-DPLL or C-Dull

  • PDF

Analog Delay Locked Loop with Wide Locking Range

  • Yoo, Changsik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.3
    • /
    • pp.193-196
    • /
    • 2001
  • For wide locking range, an analog delay locked loop (DLL) was designed with the selective phase inversion scheme and the variable number of delay elements. The number of delay elements was determined adaptively depending on the clock cycle time. During the analog fine locking stage, a self-initializing 3-state phase detector was used to avoid the initial state problem associated with the conventional 3-state phase detector. With these schemes, the locking range of analog DLL was increased by four times compared to the conventional scheme according to the simulation results.

  • PDF

MATHEMATICAL PHASE NOISE MODEL FOR A PHASE-LOCKED-LOOP

  • Limkumnerd, Sethapong;Eungdamrong, Duangrat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.233-236
    • /
    • 2005
  • Phase noise in a phase-locked-loop (PLL) is unwanted and unavoidable. It is a main concern in oscillation system especially PLL. The phase noise is derived in term of power spectrum density by using a reliable phase noise model. There are four noise sources being considered in this paper, which are generated by reference oscillator, voltage controlled oscillator, filter, and main divider. The major concern for this paper is the noise from the filter. Two types of second order low pass filter are used in the PLL system. Applying the mathematical phase noise model, the output noises are compared. The total noise from the passive filter is lower than the active filter at the offset frequency range between 1 Hz to 33 kHz.

  • PDF

A New Orthogonal Signal Generator with DC Offset Rejection for Single-Phase Phase Locked Loops

  • Huang, Xiaojiang;Dong, Lei;Xiao, Furong;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.310-318
    • /
    • 2016
  • This paper presents a new orthogonal signals generator (OSG) with DC Offset rejection for implementing a phase locked loop (PLL) in single-phase grid-connected power systems. An adaptive filter (AF) based on the least mean square (LMS) algorithm is used to constitute the OSG in this study. The DC offset in the measured grid voltage signal can be significantly rejected in the developed OSG technique. This generates two pure orthogonal signals that are free from the DC offset. As a result, the DC offset rejection performance of the presented single-phase phase locked loop (SPLL) can be enhanced. A mathematical model of the developed OSG and the principle of the adaptive filter based SPLL (AF-SPLL) are presented in detail. Finally, simulation and experimental results demonstrate the feasibility of the proposed AF-SPLL.

A Novel Single Phase Synchronous Reference Frame Phase-Locked Loop with a Constant Zero Orthogonal Component

  • Li, Ming;Wang, Yue;Fang, Xiong;Gao, Yuan;Wang, Zhaoan
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1334-1344
    • /
    • 2014
  • A novel single phase Phase-Locked Loop (PLL) is proposed in this paper to accurately and rapidly estimate the instantaneous phase angle of a grid. A conjugate rotating vector pair is proposed and defined to synthesize the single phase signal in the stationary reference frame. With this concept, the proposed PLL innovatively sets one phase input of the PARK transformation to a constant zero. By means of a proper cancellation, a zero steady state phase angle estimation error can be achieved, even under magnitude and frequency variations. The proposed PLL structure is presented together with guidelines for parameters adjustment. The performance of the proposed PLL is verified by comprehensive experiments. Satisfactory phase angle estimation can be achieved within one input signal cycle, and the estimation error can be totally eliminated in four input cycles for the most severe conditions.

A Low Spur Phase-Locked Loop with FVCO-sampled Feedforward Loop-Filter (스퍼의 크기를 줄이기 위해 VCO 주기마다 전하가 전달되는 구조의 Feedforward 루프필터를 가진 위상고정루프)

  • Choi, Hyek-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2387-2394
    • /
    • 2013
  • A low spur phase-locked loop (PLL) with FVCO-sampled feedforward loop-filter has been proposed. Conventional PLL has loop filter made of a resistor and capacitors. The proposed PLL is working stably with the filter consisted of capacitors and a switch. It has been designed with a 1.8V $0.18{\mu}m$ CMOS process and proved by simulation with HSPICE.

All-Synthesizable 5-Phase Phase-Locked Loop for USB2.0

  • Seong, Kihwan;Lee, Won-Cheol;Kim, Byungsub;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.352-358
    • /
    • 2016
  • A 5-phase phase-locked loop (PLL) for USB2.0 applications was implemented by using an all-synthesis technique. The length of the time-to-digital converter for the fine phase detector was halved by the operation of a coarse phase detector that uses 5-phase clocks. The maximum time difference between the rising edges of two adjacent-phase clocks was 6 ps at 480 MHz. The PLL chip in a 65-nm process occupies $0.038mm^2$, consumes 4.8 mW at 1.2 V. The measured rms and peak-to-peak output jitters are 8.6 ps and 45 ps, respectively.

A Discrete-Time Loop Filter Phase-locked loop with a Frequency Fluctuation Converting Circuit (주파수변동전환회로를 가진 이산시간 루프 필터 위상고정루프)

  • Choi, Young-Shig;Park, Kyung-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.89-94
    • /
    • 2022
  • In this paper, a discrete-time loop filter(DLF) phase-locked loop with a Frequency Fluctuation Converting Circuit(FFCC) has been proposed. Discrete-time loop filter can improve spur characteristic by connecting the charge pump and voltage oscillator discretely unlike a conventional continuous-time loop filter. The proposed PLL is designed to operate stably by the internal negative feedback loop including the SSC acting as a negative feedback to the discrete-time loop filter of the external negative feedback loop. In addition, the phase noise is further improved by reducing the magnitude of the loop filter output voltage variation through the FFCC. Therefore, the magnitude of jitter has been reduced by 1/3 compared to the conventional structure. The proposed phase locked loop has been simulated with Hspice using the 1.8V 180nm CMOS process.

Synchronization for IR-UWB System Using a Switching Phase Detector-Based Impulse Phase-Locked Loop

  • Zheng, Lin;Liu, Zhenghong;Wang, Mei
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.175-183
    • /
    • 2012
  • Conventional synchronization algorithms for impulse radio require high-speed sampling and a precise local clock. Here, a phase-locked loop (PLL) scheme is introduced to acquire and track periodical impulses. The proposed impulse PLL (iPLL) is analyzed under an ideal Gaussian noise channel and multipath environment. The timing synchronization can be recovered directly from the locked frequency and phase. To make full use of the high harmonics of the received impulses efficiently in synchronization, the switching phase detector is applied in iPLL. It is capable of obtaining higher loop gain without a rise in timing errors. In different environments, simulations verify our analysis and show about one-tenth of the root mean square errors of conventional impulse synchronizations. The developed iPLL prototype applied in a high-speed ultra-wideband transceiver shows its feasibility, low complexity, and high precision.

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies

  • Yoo, Junghwan;Rieh, Jae-Sung
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.98-104
    • /
    • 2017
  • This work describes the development and comparison of two phase-locked loops (PLLs) based on a 65-nm CMOS technology. The PLLs incorporate two different topologies for the output voltage-controlled oscillator (VCO): LC cross-coupled and differential Colpitts. The measured locking ranges of the LC cross-coupled VCO-based phase-locked loop (PLL1) and the Colpitts VCO-based phase-locked loop (PLL2) are 119.84-122.61 GHz and 126.53-129.29 GHz, respectively. Th e output powers of PLL1 and PLL2 are -8.6 dBm and -10.5 dBm with DC power consumptions of 127.3 mW and 142.8 mW, respectively. Th e measured phase noise of PLL1 is -59.2 at 10 kHz offset and -104.5 at 10 MHz offset, and the phase noise of PLL2 is -60.9 dBc/Hz at 10 kHz offset and -104.4 dBc/Hz at 10 MHz offset. The chip sizes are $1,080{\mu}m{\times}760{\mu}m$ (PLL1) and $1,100{\mu}m{\times}800{\mu}m$ (PLL2), including the probing pads.