• 제목/요약/키워드: Perron integral

검색결과 12건 처리시간 0.019초

THE SAP-PERRON INTEGRAL

  • Park, Jae Mvung
    • 충청수학회지
    • /
    • 제14권1호
    • /
    • pp.41-48
    • /
    • 2001
  • In this paper, we study the sap-Perron and ap-McShane integrals. In particular, we show that the sap-Perron integral is equivalent to the ap-McShane integral.

  • PDF

THE STRONG PERRON AND MCSHANE INTEGRALS

  • Park, Jae Myung;Kim, Joo Bong;Lee, Woo Youl
    • 충청수학회지
    • /
    • 제13권1호
    • /
    • pp.21-26
    • /
    • 2000
  • In this paper, we define the strong Perron integral and study the relationship between the integrals of strong Perron and McShane.

  • PDF

THE PERRON AND VARIATIONAL INTEGRALS

  • Park, Jae Myung;Lee, Deok Ho
    • 충청수학회지
    • /
    • 제10권1호
    • /
    • pp.37-41
    • /
    • 1997
  • In this paper, we give a direct proof that the Perron and variational integrals are equivalent.

  • PDF

A UNIFORM CONVERGENCE THEOREM FOR APPROXIMATE HENSTOCK-STIELTJES INTEGRAL

  • Im, Sung-Mo;Kim, Yung-Jinn;Rim, Dong-Il
    • 대한수학회보
    • /
    • 제41권2호
    • /
    • pp.257-267
    • /
    • 2004
  • In this paper, we introduce, for each approximate distribution $\~{T}$ of [a, b], the approximate Henstock-Stieltjes integral with value in Banach spaces. The Henstock integral is a special case of this where $\~{T}\;=\;\{(\tau,\;[a,\;b])\;:\;{\tau}\;{\in}\;[a,\;b]\}$. This new concept generalizes Henstock integral and abstract Perron-Stieltjes integral. We establish a uniform convergence theorem for approximate Henstock-Stieltjes integral, which is an improvement of the uniform convergence theorem for Perron-Stieltjes integral by Schwabik [3].

GAUSSIAN QUADRATURE FORMULAS AND LAGUERRE-PERRON@S EQUATION

  • HAJJI S. EL;TOUIJRAT L.
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.205-228
    • /
    • 2005
  • Let I(f) be the integral defined by : $I(f) = \int\limits_{a}^{b} f(x)w(x)dx$ with f a given function, w a nonclassical weight function and [a, b] an interval of IR (of finite or infinite length). We propose to calculate the approximate value of I(f) by using a new scheme for deriving a non-linear system, satisfied by the three-term recurrence coefficients of semi-classical orthogonal polynomials. Finally we studies the Stability and complexity of this scheme.