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THE APPROXIMATE PERRON-STIELTJES INTEGRAL 
AND APPROXIMATE ROUSSEL DERIVATIVE

Yungjin Kim

Abstract. In this paper, we introduce approximate Perron-Stieltjes 
integral and approximate Roussel derivative and investigate the dif
ferentiability of indefinite approximate Perron-Stieltjes integral.

1. Introduction
The Riemann-Stieltjes integral is useful in several areas of analy

sis as well as in probability theory and physics. It provides a con
nection between the integrals of Riemann and Lebesgue as well as a 
connection between integrals and infinite series. ([1]) It was J. Radon 
who pointed out the importance of the Lebesgue-Stieltjes integral([4]) 
for certain classical parts of analysis, particularly for potential theory. 
The modern progress of this theory, which is bound up with the theory 
of subharmonic functions, has shown up still further the fruitfulness of 
the Lebesgue-Stieltjes integral in this branch of analysis. The Perron- 
Stieltjes integral([2], [3], [4], [5], [6]) is a generalization of the Perron inte
gral and includes the Lebesgue-Stieltjes integral. In this paper, we in
troduce approximate Perron-Stieltjes integral and approximate Roussel 
derivative and investigate the differentiability of indefinite approximate 
Perron-Stieltjes integral
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2. The Definitions of the approximate Perron-Stieltjes Inte
gral and the approximate Roussel Derivative

Among the various generalizations of the Stieltjes type for the Per
ron integral(for instance R. L. Jeffery, J. Ridder and A. J. Ward), that 
due to Ward has the advantage of including the others and of defining 
the process of Stieltjes integration with respect to any finite functions 
whatsoever. In what follows, an interval, by itself, always means either 
a closed non-degenerate interval or an empty set, unless another mean
ing is obvious from the context. A function of an interval F(I) is said 
to be additive if F(/iU/2)= F(A) 十」F(『2)whenever Ii,I2and I1U/2 are 
intervals and Zi,Z2 are non-overlapping. If 0 is a finite function defined 
on [tz, 이, we define(f)[E] = : x e E}, and for I = [c, d] we define
0(1) = 0(c0 — 0(仁). And Ix represents an interval containing x.
We define the density of a set at a point. This is a very important 
concepts in real analysis. The definition given below is not the most 
general definition of density, but is suitable for our purposes. We define 
/1*and /i represent the Lebesgue outer measure arid Lebesgue measure 
respectively.

Definition 2.1. Let E be a measurable set and let c be a real 
number. The density of E at c is defined by

dcE = lim 山旦.2(으구쓰으.±.切 
九¥+ 2h

provided the limit exists. It is clear that 0 < dcE < 1 when it exists. 
The point cis a point of density of E if dcE = 1 and a point of dispersion 
of E if dcE = 0.

It can be verified that almost all the points of a measurable set E 
are points of density of E and almost all the points of complement of 
E are points of dispersion of E . We need the following definitions.

Definition 2.2. If 乃 is a measurable set, then Ed represents the 
set of all points x e E such that dxE = 1. Let Sx be a measurable set 
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in [a, 6] with x G S버. We define A = {Sx : x e [a, &]}, which is called 
an approximate distribution on [a, 이.

Remark 2.1. This A is not unique. We can take a different A.

Definition 2.3. Given two finite functions/ and 0 on [a, 이, an ad
ditive interval function U will be termed a major function of f with 
respect to(/> and A on [a, 6] if for some 8{x) > 0, U(IX) > f(x)(j)(Jx) for 
every interval Ix whose endpoints are in S； G A with 시①) < 5(rr). 
An additive interval function V will be termed a minor function of f 
with respect to(/)and A on [a, 6]if for some 5(:r) > 0, V(/x) < 
for every interval Ix whose endpoints are in G A with /丄(Ix) < 5(冗).

Definition 2.4. Let f and 0 be finite functions on [a, 이. Then f 
is approximately Perron-Stieltjes(APS) integrable with respect to 0 on 
[tz, 이 if for some A, f has at least one major function and one minor 
function of f with respect to 0 and A on [tz, b\ and the numbers 
inf {U([a, 6]) : Uis a major function with respect to 0 and A on [a, 6]} 
sup {V([a, b]) : V is a minor function with respect to 0 and A on [tz, b]} 
are equal. This common value is the APS integral of f with respect to 

0 on [a, &]. We denote the integral as and use the prefix (AP) if 
it is necessary to distinguish this integral from others. The function f is 
APS integrable on a measurable set E C [a, b\ if fxE is APS integrable 
on [a, 이.

Then we have the following theorem.

Theorem 2.1. Let f be a finite function on [a, 이. Then f, is APS 
integrable with respect to 0 on [a, 6] if and only if for each s > 0 there 
exists a major function U and a minor function V of f with respect to 
0 and Aon [cz, 이 such that

L八[a,6]) ~ V([a, 이) < 5

for some A.
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The APS integral has all of the usual properties of an integral. For 
example,
(AP) J：(ai/i + W2HM1 + M2) = Z아=1,2 aibk(人P) 亡心아日

Definition 2.5. A function 0 : [a, 이 一—> R satisfies condition(*) on 
[a, 이 if for every xq e [a, b], 0 is not constant on any interval containing 
Co

Definition 2.6. Given two finite functions of a real variable F and 
0, where 0 satisfies condition(*). We shall say that a number L is the 
approximate Roussel derivative of F with respect to 0 at a point x if 
for some A,
⑴linWj—oLFVx) — L • 0(4)] = 0 and
⑵ lim#=o= = O

where the endpoints of Ix are in G A and ⑵(0, Zx) = wp{|0(Z)| : 

I C Ix} which is called the oscillation of 0 on 7x.We denote L = 떼g.
Lemma 2.2. ([4]) Let 0 be a finite function defined on [tz, 이, E a 

bounded set in [a, 6], and T a system of intervals such that each point 
of E is an (right- or left-hand) end-point of an interval in T of arbitrarily 
small length. Then, for every number M < we can select from
T a finite system {/^ : 1 < A; < of non-overlapping intervals such 
that

乞午*（#끼） > -厂 
A=1

3. The Main Result
For the Riemann-Stieltjes indefinite integral we have the following 

theorem: Let / : [a, 이 一> 2? be bounded and let 0 : [a, 이 一■> 2? be 
of bounded variation on [<z, 이. Suppose that f is Riemann-Stieltjes 
integrable on [tz, b\ and define F(x) = fd(l〉for every x G pz, 이 . Then 
assuming that f is continuous on [a, 6],the function F is differentiable 
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almost everywhere on pz, 이 and Ff = /0' almost everywhere on [a, b]. 
For the Roussel derivative, we have the following theorem.

Theorem 3.1. Let / : [cz, 이 一> be APS integrable with respect
to 0 on pz, 6], where 0 satisfies condition(*), and let F(x) = fd(j)for 

each x € [a, b\. Then gg = f except at most those of a set E such that 

[思]) =0.

Proof. Let 0 < 6 < 1. Then for some A, there exist a major function 
U of f with respect to <j)and A on [a, b] such that L『([tz, 이) — 이) < 

s2. Let H — U — F and let Ee be the set of ⑦ G [tz, 이 which satisfies 
that for every 5 > 0 there exists an interval Ix with f丄(Jx) < 6 such that 
印4) 스 아*(#시).

It follows that each point of E£ is an endpoint of intervals Z, as small as 
we please, which fulfils the inequality H(I) > |以*(0[7]). Suppose that 
M < 乂*(0[£수]). By Lemma 2.8, there exists a finite system of non
overlapping intervals {Ik : 1 < A; < ^} such that H(Ik) > f • 人])

9 그 A/
for /c = 1, … , q and that /丄*(0[」히) > —. Consequently, since H 

k=i
is non-decreasing, s2 > 2?([(2, 이) > 쓰흐 ; and therefore M < 4s, so 
사*((》[£)]) < 4引 Note that for every x 우 E】 there exists a number 
5(rr) > 0 such that

ff(Ix) < =(#니)

oo
for every Ix with < 5(:r), and that £_]) = 0. Now let

A=1

x be any point of [tz, 이. Since L『 is a major function of /, for each 
x G [<z, 이 there exists a measurable set € A such that for some

(x) > G,U(IX) > /(^)0(1^) for every interval Ix whose endpoints are 
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in Sx with /i(Ix) < @K：r). Let

S' = (J {Ix : endpoints of Ix are in Sx}.
xe［a,b\

We have for every interval Ix E S with /丄(Ix) < di(:r),
F(4) —W = L八4) — /(z)0(4) — H(IX) > _H(IX) > —s2, 
and if x Ee, there exists a positive number @2(久) <(引⑦) such that 
for every Ix E S with 사(Zx) < 에川
F(4) — /(z)0(4) > —K(4) > —e • /』*(0［기) > —e • 以仏 4).
Combining this with the similar upper evaluations of F(IX) — f(x)d)(!x) 
obtained by symmetry, we see, since s is a arbitrary positive number, 

that rdF(x) 
Td(^(x) = except at most those of a set E

A=1
which

satisfies that //(0［乃］) = 0 . □
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