THE STRONG PERRON INTEGRAL IN THE n-DIMENSIONAL SPACE \mathbb{R}^n JAE MYUNG PARK, BYUNG MOO KIM, AND DEUK HO LEE ABSTRACT. In this paper, we introduce the SP-integral and the SP_{α} -integral defined on an interval in the n-dimensional Euclidean space \mathbb{R}^n . We also investigate the relationship between these two integrals. ## 1. Introduction and preliminaries It is well known [3] that the Perron integral defined on an interval of the real line \mathbb{R} by major and minor functions which are not assumed to be continuous is equivalent to the one defined by continuous major and minor functions and that the strong Perron integral defined on an interval of \mathbb{R} by strong major and minor functions is equivalent to the McShane integral. In this paper, we introduce Perron-type integrals defined on an interval of the n-dimensional Euclidean space \mathbb{R}^n using the strong major and minor functions, and investigate the relationship between these integrals. We shall call it the strong Perron integral, or briefly SP-integral. For a subset E of the n-dimensional Euclidean space \mathbb{R}^n , the Lebesgue measure of E is denoted by |E|. For a point $x=(x_1,x_2,\cdots,x_n)\in\mathbb{R}^n$, the norm of x is $||x||=\max_{1\leq i\leq n}|x_i|$ and the δ -neighborhood $U(x,\delta)$ of x is an open cube centered at x with sides equal to 2δ . For an interval $I = [a_1, b_1] \times [a_2, b_2] \times \cdots [a_n, b_n]$ of \mathbb{R}^n with $a_i < b_i$ for $i = 1, 2, \dots, n$, we call the number $r(I) = \min_i (b_i - a_i) / \max_i (b_i - a_i)$ the regularity of I. If $r(I) > \alpha(\alpha \in (0, 1))$, then the interval I is said to be α -regular. Received March 4, 2004. ²⁰⁰⁰ Mathematics Subject Classification: 26A39. Key words and phrases: strong derivative, strong major function, strong minor function, strong Perron integral. Throughout this paper, I_0 denotes a fixed interval in \mathbb{R}^n and \mathcal{I} the family of all subintervals of I_0 . A positive function δ defined on a set $E \subset I_0$ is called a gauge on E. By \mathcal{F} we denote the free full interval basis $\mathcal{F} = \{(I, x) : I \in \mathcal{I}, x \in I_0\}$. For a given gauge δ and a given $\alpha \in (0, 1)$, we write $$\mathcal{F}^{\alpha} = \{(I, x) \in \mathcal{F} : r(I) > \alpha\},$$ $$\mathcal{F}^{\alpha}_{\delta} = \{(I, x) \in \mathcal{F} : r(I) > \alpha, I \subset U(x, \delta(x))\}.$$ For a set $E \subset I_0$, we write $$\mathcal{F}(E) = \{ (I, x) \in \mathcal{F} : I \subset E \},$$ $$\mathcal{F}[E] = \{ (I, x) \in \mathcal{F} : x \in E \}.$$ A finite subset π of \mathcal{F} is a \mathcal{F} -partition of I_0 if for distinct pairs (I_1, x_1) and (I_2, x_2) in π , I_1 and I_2 are nonoverlapping and $\bigcup_{(I,x)\in\pi} I = I_0$. ## 2. The strong Perron integral To define the strong Perron integral, we introduce first the definitions of the strong α -regular and strong lower and upper derivatives. DEFINITION 2.1. Let F be an interval function and let $x \in I_0$. The strong α -regular lower and upper derivatives of F at x are defined by $$\underline{SD}_{\alpha}F(x) = \sup_{\delta}\inf\bigg\{\frac{F(I)}{|I|}: (I,x) \in \mathcal{F}^{\alpha}_{\delta}[\{x\}]\bigg\},$$ $$\overline{SD}_{\alpha}F(x) = \inf_{\delta}\sup\bigg\{\frac{F(I)}{|I|}: (I,x) \in \mathcal{F}^{\alpha}_{\delta}[\{x\}]\bigg\}.$$ The function F is strongly α -regularly differentiable at x if $$\underline{SD}_{\alpha}F(x) = \overline{SD}_{\alpha}F(x) \neq \pm \infty.$$ This common value is the strong α -regular derivative of F at x and is denoted by $SD_{\alpha}F(x)$. The strong lower and upper derivatives of F at x are defined by $$\underline{SD}F(x) = \inf_{\alpha \in \{0,1\}} \underline{SD}_{\alpha}F(x),$$ $$\overline{SD}F(x) = \sup_{\alpha \in (0,1)} \overline{SD}_{\alpha}F(x).$$ The function F is strongly differentiable at x if $\underline{SD}F(x) = \overline{SD}F(x) \neq \pm \infty$. This common value is the strong derivative of F at x and is denoted by SDF(x). It is easy to see that for any $0 < \alpha < \beta < 1$ and for any $x \in I_0$ we have $$\underline{SD}F(x) \leq \underline{SD}_{\alpha}F(x) \leq \underline{SD}_{\beta}F(x) \leq \overline{SD}_{\beta}F(x) \leq \overline{SD}_{\alpha}F(x) \leq \overline{SD}F(x).$$ DEFINITION 2.2. Let f be a point function on I_0 . - (a) An interval function M is a strong α -major function of f on I_0 if it is superadditive and $\underline{SD}_{\alpha}M(x) \geq f(x)$ for all $x \in I_0$. - (b) An interval function m is a strong α -minor function of f on I_0 if it is subadditive and $\overline{SD}_{\alpha}m(x) \leq f(x)$ for all $x \in I_0$. DEFINITION 2.3. A function $f: I_0 \to \mathbb{R}$ is SP_{α} -integrable on I_0 if $$-\infty < \sup\{m(I_0)\} = \inf\{M(I_0)\} < \infty,$$ where the supremum is taken over all strong α -minor functions of f and the infimum is taken over all strong α -major functions of f. This common value is the SP_{α} -integral of f on I_0 and is denoted by $(SP_{\alpha})\int_{I_0} f$. The following theorem is an immediate consequence of the definition. THEOREM 2.4. A function $f:I_0\to\mathbb{R}$ is SP_{α} -integrable on I_0 if for each $\epsilon>0$ there exist a strong α -major function M and a strong α -minor function m on I_0 such that $M(I_0)-m(I_0)<\epsilon$. DEFINITION 2.5. Let $\alpha \in (0,1)$. A function f on I_0 is M_{α} -integrable on I_0 with integral A if there exists a gauge δ such that $$\left| \sum_{(I,x)\in\pi} f(x)|I| - A \right| < \epsilon$$ for every $\mathcal{F}^{\alpha}_{\delta}$ -partition π of I_0 . We write $A = (M_{\alpha}) \int_{I_0} f$. THEOREM 2.6. Let $\alpha \in (0,1)$. If a function f is SP_{α} -integrable on I_0 , then f is M_{α} -integrable on I_0 and the integrals are equal. PROOF. Suppose that f is SP_{α} -integrable on I_0 and let $\epsilon > 0$. Then there exist a strong α -major function M and a strong α -minor function m of f on I_0 such that $$-\epsilon < m(I_0) - (SP_\alpha) \int_{I_0} f \le 0 \le M(I_0) - (SP_\alpha) \int_{I_0} f < \epsilon.$$ Since $\overline{SD}_{\alpha}m \leq f \leq \underline{SD}_{\alpha}M$ on I_0 , for each $x \in I_0$ there exists $\delta(x) > 0$ such that $$\frac{M(I)}{|I|} \ge f(x) - \epsilon$$ and $\frac{m(I)}{|I|} \le f(x) + \epsilon$ whenever $(I, x) \in \mathcal{F}^{\alpha}_{\delta}[\{x\}].$ If $\pi = \{(I_i, x_i) : 1 \le i \le n\}$ is any $\mathcal{F}^{\alpha}_{\delta}$ -partition of I_0 , then we have $$\sum_{i=1}^{n} f(x_i)|I_i| - (SP_{\alpha}) \int_{I_0} f$$ $$\leq \sum_{i=1}^{n} [f(x_i)|I_i| - M|I_i)] + M(\Delta) - (SP_{\alpha}) \int_{I_0} f$$ $$< \epsilon \sum_{i=1}^{n} |I_i| + \epsilon = \epsilon(|I_0| + 1).$$ Similarly, using the minor function m $$\sum_{i=1}^{n} f(x_i)|I_i| - (SP_{\alpha}) \int_{I_0} f > -\epsilon(|I_0| + 1).$$ It follows that f is M_{α} -integrable on I_0 and $$(M_{\alpha})\int_{I_0} f = (SP_{\alpha})\int_{I_0} f.$$ THEOREM 2.7. Let $\alpha \in (0,1)$. If f is M_{α} -integrable on I_0 , then f is SP_{α} -integrable on I_0 . PROOF. Suppose that f is M_{α} -integrable on I_0 and let $\epsilon > 0$. Then there exists a gauge δ on I_0 such that $$\left| \sum_{(I,x)\in\pi} f(x)|I| - (M_{\alpha}) \int_{I_0} f \right| < \epsilon$$ for every $\mathcal{F}^{\alpha}_{\delta}$ -partition π of I_0 . For each interval I, let $$M(I) = \sup \bigg\{ \sum_{(J,x) \in \pi} f(x)|J| : \pi \subset \mathcal{F}^{\alpha}_{\delta}(I) \bigg\},$$ $$m(I) = \inf \bigg\{ \sum_{(J,x) \in \pi} f(x) |J| : \pi \subset \mathcal{F}^{\alpha}_{\delta}(I) \bigg\}.$$ Then it is easy to show that M is superadditive and m is subadditive. Fix a point $x \in I_0$. For each $(I,x) \in \mathcal{F}^{\alpha}_{\delta}[\{x\}], M(I) \geq f(x)|I|$ and $\frac{M(I)}{|I|} \geq f(x)$. It follows that $\underline{SD}_{\alpha}M(x) \geq f(x)$. Similarly, $\overline{SD}_{\alpha}m(x) \leq f(x)$. Hence M is a strong α -major function of f on I_0 and m is a strong α -minor function of f on I_0 . Since $$\left| \sum_{(I,x)\in\pi_1} f(x)|I| - \sum_{(J,y)\in\pi_2} f(y)|J| \right| < 2\epsilon$$ for any two $\mathcal{F}^{\alpha}_{\delta}$ -partition π_1 and π_2 of I_0 , we have $M(I_0) - m(I_0) \leq 2\epsilon$. By Theorem 2.4, f is SP_{α} -integrable on I_0 . DEFINITION 2.8. Let f be a point function on I_0 . - (a) An interval function M is a strong major function of f on I_0 if it is superadditive and $\underline{SD}M(x) \geq f(x)$ for all $x \in I_0$. - (a) An interval function m is a strong minor function of f on I_0 if it is subadditive and $\overline{SD}m(x) \leq f(x)$ for all $x \in I_0$. DEFINITION 2.9. A function f is SP-integrable on I_0 if $-\infty < \sup\{m(I_0)\} = \inf\{M(I_0)\} < \infty$, where the supremum is taken over all strong minor functions of f and the infimum is taken over all strong major functions of f. This common value is the strong Perron integral (SP-integral) of f on I_0 and is denoted by $(SP) \int_{I_0} f$. DEFINITION 2.10. A function f is M_0 -integrable on I_0 with integral A if it is M_{α} -integrable on I_0 with integral A for each $\alpha \in (0,1)$. THEOREM 2.11. If a function f is SP-integrable on I_0 , then f is SP_{α} -integrable on I_0 for each $\alpha \in (0,1)$ and the integrals are equal. Proof. Since $$\underline{SD}F \leq \underline{SD}_{\alpha}F \leq \overline{SD}_{\alpha}F \leq \overline{SD}F$$ for each $\alpha \in (0,1)$, every strong major function is a strong α -major function and the same is true for minor functions. Hence it follows that if f is SP-integrable on I_0 with integral A, then f is SP_{α} -integrable for each $\alpha \in (0,1)$ with integral A. From Theorem 2.6, Theorem 2.7 and Theorem 2.11, we get the following chain of inclusions : $$(1) SP \subset \bigcap_{\alpha \in (0,1)} SP_{\alpha} = \bigcap_{\alpha \in (0,1)} M_{\alpha} = M_0,$$ where SP denotes the collection of all SP-integrable functions and $\bigcap_{\alpha \in (0,1)} SP_{\alpha}$ denotes the collection of all SP_{α} -integrable functions for each $\alpha \in (0,1)$. ## References - [1] B. Bongiorno, L. Di Piazza, and V. Skvortsov, On continuous major and minor functions for the n-dimensional Perron integral, Real Anal. Exchange 22 (1996/1997), no. 1, 318–327. - [2] _____, On the n-dimensional Perron integral defined by ordinary derivatives, Real Anal. Exchange **26** (2000/2001), no. 1, 371–380. - [3] R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, Amer. Math. Soc., 1994. - [4] J. Kurzweil and J. Jarnik, Equivalent definitions of regular generalized Perron integral, Czechoslovak Math. J. 42 (1992), 365–378. - [5] _____, Differentiability and integrability in n dimensions with respect to α-regular intervals, Results Math. 21 (1992), no. 1–2, 138–151. - [6] M. P. Navarro and V. A. Skvortsov, On n-dimensional Perron integral, Southeast Asian Bull. Math. 20 (1997), no. 2, 111–116. - [7] K. M. Ostaszewski, Henstock Integration in the Plane, vol. 353, Mem. Amer. Math. Soc., 1986. - [8] Jae Myung Park, The Denjoy extension of the Riemann and McShane integrals, Czechoslovak Math. J. 50 (2000), no. 125, 615-625. - [9] S. Saks, Theory of the Integral, Dover, New York, 1964. - [10] V. A. Skvortsov, Continuity of δ-variation and construction of continuous major and minor functions for the Perron integral, Real Anal. Exchange 21 (1995/1996), no. 1, 270–277. Jae Myung Park Department of Mathematics Chungnam National University Daejeon 305–764, Korea E-mail: jmpark@math.cnu.ac.kr Byung Moo Kim Department of Mathematics Chungju National University Chungju 383–870, Korea E-mail: bmkim6@hotmail.com Deuk Ho Lee Department of Mathematics Education Kongju National University Kongju 314–701, Korea E-mail: dhlee2@kongju.ac.kr