• Title/Summary/Keyword: Peroxidation

Search Result 2,197, Processing Time 0.029 seconds

Study on the hepatoprotective effects of lemon balm and dandelion leaf extract combination in carbon tetrachloride-mediated liver injured mice (사염화탄소 유도성 급성 간 손상 모델에서 레몬밤과 민들레 잎 추출물의 혼합 비율에 따른 간 보호 효능 연구)

  • Choi, Beom-Rak;Cho, Il Je;Jung, Su-Jin;Kim, Jae Kwang;Lee, Dae Geon;Ku, Sae Kwang;Park, Ki-Moon
    • Herbal Formula Science
    • /
    • v.27 no.3
    • /
    • pp.199-211
    • /
    • 2019
  • Objectives : Present study investigated the hepatoprotective effects of various combinations of lemon balm and dandelion (LD) leaf extract on carbon tetrachloride ($CCl_4$)-induced acute liver injury. Methods : Mice were orally treated with 200 mg/kg of LD extracts [1:1, 1:2, 1:4, 1:6, 1:8, 2:1, 4:1, 6:1, or 8:1 (weight : weight)] for 7 days, and then intraperitoneally injected with $CCl_4$ (0.5 mL/kg). Silymarin (100 mg/kg) was used as reference drug. Body weight gain, relative liver weight, serum biochemistry, histopathologic analyses, and hepatic antioxidant system were examined to elucidate the fittest combination ratio of LD extract. Results : All varying combinations of LD extract significantly increased body weight gain and decreased relative liver weight by $CCl_4$. In addition, LD extract reduced serum aspartate aminotransferase and alanine aminotransferase. Histopathological analyses indicated that LD extract significantly decreased histological activity index score, degenerated hepatocytes, and infiltrated inflammatory cells induced by $CCl_4$. Moreover, LD extract reduced lipid peroxidation, and attenuated the reduction of hepatic glutathione, superoxide dismutase, and catalase by $CCl_4$. Although there were no statistical differences in body weight gain between silymarin- and LD extract-treated groups, administration of 1:1, 2:1, and 4:1 combination of LD extract exhibited more favorable hepatoprotective effects than silymarin. Especially, 2:1 combination of LD extract showed the most potent hepatoprotective effects. Conclusion : Of various combinations of LD extract tested, present results suggest that 2:1 combination of LD extract would be a promising herbal formulation to protect liver from oxidative stress.

Effect of extraction method on quality characteristics of the carrot juice (주스착즙 방식에 따른 당근 주스의 품질 특성 변화)

  • Park, Hye-Jung;Kim, Ji-Youn;Lee, Song Min;Kim, Hee Sook;Lee, Sang-Hyeon;Lee, Mun Hyon;Jang, Jeong Su
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.369-378
    • /
    • 2019
  • This study aimed to compare the quality characteristics of carrot juice based on different extraction methods such as centrifugation, single gear, and twin gear methods. Juice quality was evaluated based on extraction yield, nutritional components, and cloud stability. Twin gear extraction resulted in the highest extraction yield, and the highest mineral content. In addtion, ${\beta}$-carotene level higher than the recommended daily intake was obtained only in the carrot juice prepared using twin gear extraction of 100 g carrots. The minimum particle size was observed in twin gear extraction, followed by single gear extraction and centrifugation method. Therefore, twin gear extraction was selected as the optimal method, and changes in the antioxidant and metabolic activity of carrot juice were investigated using this method. Consequently, the carrot juice showed a higher lipid peroxidation inhibition rate than ${\alpha}$-tocopherol (1 mg/mL), and angiotensin I-converting enzyme (ACE) inhibitory activity was increased upon digestion.

Evaluation of Oxidation Inhibition and Nitrogen Oxide Scavenging Activity from Curcuma longa L. Extracts (울금(Curcuma longa L.) 추출물의 산화억제 및 질소산화물 소거활성)

  • Oh, Da-Young;Kim, Han-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.13-22
    • /
    • 2019
  • The aim of the present investigation was to assess the oxidation inhibition by nitrogen oxide scavenging activity and physiological activities. Bioactive compound of proanthocyanidin $69.000{\pm}2.737mg$ catechin equivalents (CE)/g dry weight. Antioxidant effects (nitric oxide radical scavenging activity, nitrite scavenging activity, ${\beta}$-carotene bleaching assay and lipid peroxidation inhibition activity) of distilled water (DW), 70% ethanol and n-butanol extract of turmeric (Curcuma longa L.). Turmeric extracts yield were DW 17.11%, 70% ethanol 15.26% and n-butanol 4.12%, respectively. Oxidation inhibition activity of the samples exhibited a dose-dependent increase. However, in the current study, none of the samples evaluated showed activity as strong as the BHA and trolox. Total flavonoid content was the highest in the n-butanol extract, followed by 70% ethanol and DW extract. Further, nitrite scavenging activity was the highest for the n-butanol extract. As a result of this experiment, the turmeric can be utilized as a valuable and potential natural oxidation inhibition for the functional food industry.

Antioxidative Effect of Phrymaleptostachyavar. Asiatica HARA Extract on the Neurotoxicity of Aluminum Sulfate, Environmental Pollutant (환경오염물질인 황산알루미늄의 신경독성에 대한 파리풀 추출물의 항산화 효과)

  • Yoo, Sun-Mi;Lee, Jun-Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.2
    • /
    • pp.235-244
    • /
    • 2019
  • This study examined the neurotoxicity of aluminum sulfate (AS), an environmental pollutant, and the protective effect of Phrymaleptostachya var. asiatica HARA (PLVAH) extract on the neurotoxicity induced by AS in the cultured C6 glioma cells. For this study, the cell viability and antioxidative effects, such as electron donating (ED) activity, lipid peroxidation (LP) activity, and superoxide anion-radical (SAR) scavenging activity, were analyzed. AS decreased the cell viability significantly in a dose-dependent manner and the $XTT_{50}$ value was measured at $120.0{\mu}M$ of AS. The neurotoxicity of AS was determined to be mid-toxic by Borenfreund and Puerner's toxic criteria. In addition, the catalase (CAT), antioxidant enzyme remarkably increased the cell viability injured by AS-induced neurotoxicity in these cultures. Regarding the protective effect of the PLVAH extract on AS-induced neurotoxicity, PLVAH extract significantly increased the ED ability, and the inhibitory ability of the LP and SAR scavenging ability. These findings suggest that oxidative stress is involved in the cytotoxicity of AS, and the PLVAH extract effectively protected against AS-induced neurotoxicity by its antioxidative effects. Natural resources, such as the PLVAH extract may be a putative therapeutic agent for the treatment of the toxicity induced by heavy metallic compounds, such as AS correlated with the oxidative stress.

Sasa quelpaertensis Nakai ethyl acetate fraction protects the liver against chronic alcohol-induced liver injury and fat accumulation in mice (만성 알코올 유발 마우스 간손상 및 지방 축적에 대한 제주조릿대잎 에틸 아세테이트 분획물의 간 보호 효과)

  • Kim, Areum;Lee, Youngju;Herath, Kalahe Hewage Iresha Nadeeka Madushani;Kim, Hyo Jin;Yang, Jiwon;Kim, Ju-Sung;Jee, Youngheun
    • Korean Journal of Veterinary Research
    • /
    • v.60 no.4
    • /
    • pp.215-223
    • /
    • 2020
  • Sasa (S.) quelpaertensis Nakai (Korean name, Jeju-Joritdae), which has anti-oxidative and anti-inflammatory activities, is a type of bamboo grass distributed widely in Jeju Island, Korea. S. quelpaertensis leaves are used for therapeutic purposes in traditional Korean medicine. This study examined the hepatoprotective effects of the S. quelpaertensis ethyl acetate fraction (SQEA) in a mouse model to mimic alcoholic liver damage. The mice were administered orally with 30% alcohol (5 g/kg) once per day with or without SQEA treatments (100 and 200 mg/kg) for 14 days consecutively. Alcohol consumption increased the serum alcohol content and histopathological changes but reduced the liver weight. Moreover, the livers of the alcohol group exhibited the accumulation of malondialdehyde and cytochrome P450 2E1 (CYP2E1), and lipid droplet coating protein perilipin-2. On the other hand, SQEA dose-dependently attenuated the alcohol-induced serum ethanol content and liver histopathological changes but increased the liver weight. Moreover, SQEA attenuated the level of CYP2E1 and inhibited alcohol-induced lipogenesis in the liver via decreased perilipin-2 expression. These results suggest that SQEA can provide a potent way to reduce the liver damage caused by alcohol consumption.

Vitamin E improves antioxidant status but not lipid metabolism in laying hens fed a aged corn-containing diet

  • Ding, X.M.;Mu, Y.D.;Zhang, K.Y.;Wang, J.P.;Bai, S.P.;Zeng, Q.F.;Peng, H.W.
    • Animal Bioscience
    • /
    • v.34 no.2
    • /
    • pp.276-284
    • /
    • 2021
  • Objective: The objective of this study was to determine whether a dietary vitamin E (VE) supplement could alleviate any detrimental effects of aged corn on lipid metabolism and antioxidant status in laying hens. Methods: The experiment consisted of a 2×3 factorial design with two corn types (normal corn and aged corn (stored for 4 yr) and three concentrations of VE (0, 20, and 100 IU/kg). A total of 216 Lohmann laying hens (50 wk of age) were randomly allocated into six treatment diets for 12 wk. Each treatment had 6 replicates of 6 hens per replicate. Results: The results show that aged corn significantly decreased the content of low-density lipoprotein cholesterol (p<0.05), and reduced chemokine-like receptor 1 (CMKLR1) mRNA expression (p<0.05) in the liver compared to controls. Diet with VE did not alter the content of crude fat and cholesterol (p>0.05), or acetyl-CoA carboxylase, lipoprotein lipase, fatty acid synthase or CMKLR1 mRNA expression (p>0.05) in the liver among treatment groups. Aged corn significantly increased the content of malondialdehyde (MDA) (p<0.05) and decreased superoxide dismutase (SOD) activity (p<0.05) in the liver. The VE increased the content of MDA (p<0.05) but decreased glutathione peroxidase (GSH-Px) activity in serum (p<0.01) and in the ovaries (p<0.05). Adding VE at 20 and 100 IU/kg significantly increased GSH-Px activity (p<0.05) in liver and in serum (p<0.01), 100 IU/kg VE significantly increased SOD activity (p<0.05) in serum. Aged corn had no significant effects on GSH-Px mRNA or SOD mRNA expression (p<0.01) in the liver and ovaries. Addition of 100 IU/kg VE could significantly increase SOD mRNA expression (p<0.01) in the liver and ovary. Conclusion: Aged corn affected lipid metabolism and decreased the antioxidant function of laying hens. Dietary VE supplementation was unable to counteract the negative effects of aged corn on lipid metabolism. However, addition of 100 IU/kg VE prevented aged corninduced lipid peroxidation in the organs of laying hens.

Development of a Cosmetic Ingredient Containing DHA Derivatives for Anti-inflammation, Anti-wrinkle, and Improvement of Skin Barrier Function (DHA 유도체를 이용한 항염, 항노화, 피부장벽 강화용 화장품 원료의 개발)

  • Lee, Miyoung;Lee, Gil-Yong;Suh, Jinyoung;Lee, Kyung min;Lee, Woojung;Cho, Hee Won;Yi, Jong-Jae;Seo, Jeong-Woo;Choi, Heonsik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.1
    • /
    • pp.65-73
    • /
    • 2021
  • It is very important to control the inflammation of the skin because it can develop into diseases such as atopy as well as scarring and aging. In this work, we recently identified the in vitro synthesis of specialized pro-resolving mediators (SPMs) known to control inflammation in the human body and the applicability of cosmetics. Using recombinant protein of lipoxygenase from Glycine max, we succeeded to prepare mixtures of mono- or di-hydroxy DHA named as S-SPMs and used them for in vitro efficacy test. To investigate anti-inflammatory effect of S-SPMs, mRNA level of TNF-α and IL-6 were analyzed. Under UVB exposed condition, expression of both were decreased by S-SPMs treatment. And we observed reduced production of nitric oxide (NO) by S-SPMs application under the condition with diesel particulate matter (DPM). At the same experimental condition, malondialdehyde (MDA) production was decreased by S-SPMs, indicating the inhibitory effect of S-SPMs in lipid peroxidation. In addition, S-SPMs treatment resulted in reduction of matrix metalloproteinases-1 (MMP-1) expression and elevation of procollagen type I synthesis. Together with this, mRNA level of filaggrin and loricrin were increased by S-SPMs, indicating enhancement of skin barrier function. These results demonstrate that S-SPMs is a good candidate to develop as a cosmetic ingredient for anti-inflammation, anti-wrinkle, and improvement of skin barrier function.

Assessment of Rhizosphere Microbial Community Structure in Tomato Plants after Inoculation of Bacillus Species for Inducing Tolerance to Salinity (토마토에 염류 내성을 유도하는 바실러스 균주 처리 후 근권 미생물 군집 구조 연구)

  • Yoo, Sung-Je;Lee, Shin Ae;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.49-59
    • /
    • 2021
  • BACKGROUND: Soil salinity causes reduction of crop productivity. Rhizosphere microbes have metabolic capabilities and ability to adaptation of plants to biotic and abiotic stresses. Plant growth-promoting bacteria (PGPB) could play a role as elicitors for inducing tolerance to stresses in plants by affecting resident microorganism in soil. This study was conducted to demonstrate the effect of selected strains on rhizosphere microbial community under salinity stress. METHODS AND RESULTS: The experiments were conducted in tomato plants in pots containing field soil. Bacterial suspension was inoculated into three-week-old tomato plants, one week after inoculation, and -1,000 kPa-balanced salinity stress was imposed. The physiological and biochemical attributes of plant under salt stress were monitored by evaluating pigment, malondialdehyde (MDA), proline, soil pH, electrical conductivity (EC) and ion concentrations. To demonstrate the effect of selected Bacillus strains on rhizosphere microbial community, soil microbial diversity and abundance were evaluated with Illumina MiSeq sequencing, and primer sets of 341F/805R and ITS3/ITS4 were used for bacterial and fungal communities, respectively. As a result, when the bacterial strains were inoculated and then salinity stress was imposed, the inoculation decreases the stress susceptibility including reduction in lipid peroxidation, enhanced pigmentation and proline accumulation which subsequently resulted in better plant growth. However, bacterial inoculations did not affect diversity (observed OTUs, ACE, Chao1 and Shannon) and structure (principle coordinate analysis) of microbial communities under salinity stress. Furthermore, relative abundance in microbial communities had no significant difference between bacterial treated- and untreated-soils under salinity stress. CONCLUSION: Inoculation of Bacillus strains could affect plant responses and soil pH of tomato plants under salinity stress, whereas microbial diversity and abundance had no significant difference by the bacterial treatments. These findings demonstrated that Bacillus strains could alleviate plant's salinity damages by regulating pigments, proline, and MDA contents without significant changes of microbial community in tomato plants, and can be used as effective biostimulators against salinity stress for sustainable agriculture.

Enhancement of Photosynthetic Characteristics and Antioxidant Enzyme Activities on Chili Pepper Plants by Salicylic Acid Foliar Application under High Temperature and Drought Stress Conditions (고온 및 건조 스트레스 조건 하에서 살리실산 경엽처리에 의한 고추의 광합성 특성 및 항산화효소 활성 증대)

  • Lee, Jinhyoung;Lee, Heeju;Wi, Seunghwan;Lee, Hyejin;Choi, Haksoon;Nam, Chunwoo;Jang, Seonghoe
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.311-318
    • /
    • 2022
  • Salicylic acid (SA), a phenolic compound, plays a pivotal role in regulating a wide range of physiological and metabolic processes in plants such as antioxidant cellular defense, photosynthesis, and biotic and abiotic stress responses during the growth and development. We examined the effect of exogenous SA application (100 mg·L-1) on the growth, yield, photosynthetic characteristics, lipid peroxidation, and antioxidant enzyme activity of chili pepper plants under high temperature and drought stress conditions. SA treatment induced increases of net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) under the stress condition with the highest level after the third treatment. The contents of malondialdehyde and H2O2 were significantly lower in the third treatment of SA compared to the control. The activity of ascorbate peroxidase, catalase, peroxidase and superoxide dismutase, increased in treated plants by up to 247, 318, 55 and 54%, respectively compared to the nontreated control. There was no significant difference in the growth characteristics between SA-treated and nontreated plants, while the SA treatment increased marketable yield (kg/10a) by about 15% compared to the nontreated control. Taken together, these results suggest that foliar application of SA alleviates physiological damages caused by the combination of drought and heat stress, and enhances the photosynthetic capacity and antioxidant enzyme activities, thereby improving tolerance to a combination of water deficit and heat stress in chili pepper plants.

Oxya chinensis sinuosa Mishchenko (Grasshopper) Extract Protects INS-1 Pancreatic β cells against Glucotoxicity-induced Apoptosis and Oxidative Stress (INS-1 췌장 베타 세포에서 벼메뚜기(Oxya chinensis sinuosa Mistshenk) 추출물의 당독성 개선 효과)

  • Park, Jae Eun;Han, Ji Sook
    • Journal of Life Science
    • /
    • v.31 no.11
    • /
    • pp.969-979
    • /
    • 2021
  • Type 2 diabetes is a serious chronic metabolic disease, and the goal of diabetes treatment is to keep blood glucose at a normal level and prevent complications from diabetes. Hyperglycemia is a key pathologic feature of type 2 diabetes that mainly results from insulin resistance and pancreatic β-cell dysfunction. Chronic exposure of β-cells to elevated glucose concentrations induces glucotoxicity. In this study, we examined whether an 80% ethanol extract of Oxya chinensis sinuosa Mishchenko (OEE) protected INS-1 pancreatic β-cells against glucotoxicity-induced apoptosis and oxidative stress. Pretreatment with a high concentration of glucose (high glucose = 30 mM) induced glucotoxicity and apoptosis of INS-1 pancreatic β cells. Treatment with OEE significantly increased cell viability. Treatment with 0.01-0.20 mg/ml OEE dose dependently decreased intracellular reactive oxygen species, lipid peroxidation, and nitric oxide levels and increased insulin secretion in high glucose-pretreated INS-1 β cells. OEE also significantly increased the activities of antioxidant enzymes in response to high-glucose-induced oxidative stress. Moreover, OEE treatment significantly reduced the expressions of pro-apoptotic proteins, including Bax, cytochrome C, caspase-3, and caspase-9, and increased anti-apoptotic Bcl-2 expression. Apoptotic cells were identified using Annexin-V/propidium iodide staining, which revealed that treatment with OEE significantly reduced high-glucose-induced apoptosis. These findings implicate OEE as a valuable functional food in protecting pancreatic β-cells against glucotoxicity-induced apoptosis and oxidative stress.