DOI QR코드

DOI QR Code

Antioxidative Effect of Phrymaleptostachyavar. Asiatica HARA Extract on the Neurotoxicity of Aluminum Sulfate, Environmental Pollutant

환경오염물질인 황산알루미늄의 신경독성에 대한 파리풀 추출물의 항산화 효과

  • Yoo, Sun-Mi (Department of Public Health, Graduate School of Wonkwang University) ;
  • Lee, Jun-Hee (Department of Emergency Medicine, Sanbon Hospital, Wonkwang University College of Medicine)
  • 유선미 (원광대학교 대학원 보건학과) ;
  • 이준희 (원광대학교 의과대학 산본병원 응급의학과)
  • Received : 2019.05.02
  • Accepted : 2019.05.22
  • Published : 2019.06.30

Abstract

This study examined the neurotoxicity of aluminum sulfate (AS), an environmental pollutant, and the protective effect of Phrymaleptostachya var. asiatica HARA (PLVAH) extract on the neurotoxicity induced by AS in the cultured C6 glioma cells. For this study, the cell viability and antioxidative effects, such as electron donating (ED) activity, lipid peroxidation (LP) activity, and superoxide anion-radical (SAR) scavenging activity, were analyzed. AS decreased the cell viability significantly in a dose-dependent manner and the $XTT_{50}$ value was measured at $120.0{\mu}M$ of AS. The neurotoxicity of AS was determined to be mid-toxic by Borenfreund and Puerner's toxic criteria. In addition, the catalase (CAT), antioxidant enzyme remarkably increased the cell viability injured by AS-induced neurotoxicity in these cultures. Regarding the protective effect of the PLVAH extract on AS-induced neurotoxicity, PLVAH extract significantly increased the ED ability, and the inhibitory ability of the LP and SAR scavenging ability. These findings suggest that oxidative stress is involved in the cytotoxicity of AS, and the PLVAH extract effectively protected against AS-induced neurotoxicity by its antioxidative effects. Natural resources, such as the PLVAH extract may be a putative therapeutic agent for the treatment of the toxicity induced by heavy metallic compounds, such as AS correlated with the oxidative stress.

본 연구는 배양된 C6 신경교종(glioma) 세포에서 환경오염 원인 황산알루미늄에 의한 신경 독성과 파리풀(PLVAH)추출물의 AS에 의해 유도된 신경 독성에 대한 보호효과를 확인해 보았다. 이를 위해 세포생존력과 전자공여(ED)능, 지질과산화(LP) 저해능 및 과산소음이온라디칼(superoxide anion-radical, SAR) 소거능과 같은 항산화효과를 조사하였다. AS는 용량의존적으로 현저히 세포생존율을 감소시켰고 AS의 $XTT_{50}$ 값은 $120.0{\mu}M$로 측정되었다. AS의 신경 독성은 Borenfreund와 Puerner의 독성 기준에 의해 중간 독성으로 판정되었다. 또한, 항산화제인 catalase (CAT)는 AS의 신경독성에 의해 손상된 세포의 생존력을 현저히 증가시켰다. AS 유발 신경 독성에 대한 PLVAH 추출물의 보호 효과에서, PLVAH 추출물은 ED의 능력, LP의 억제 능력 및 SAR 소거능을 유의하게 증가시켰다. 이러한 결과로부터 산화 스트레스가 AS의 세포독성에 관여하고 있으며, PLVAH 추출물의 항산화 작용에 의해 AS에 의해 유도된 신경 독성을 효과적으로 보호한다는 것을 알 수 있었다. PLVAH 추출물과 같은 천연 성분은 산화스트레스를 만드는 AS와 같은 중금속 화합물로 인한 독성을 치료할 수 있는 잠재적 치료제로 가치가 있다고 사료된다.

Keywords

References

  1. Wang S, Shi X. Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem. 2001;222:3-9. https://doi.org/10.1023/A:1017918013293.
  2. Jung JY, Jung IJ, Jekal SJ. The protective effect of Lonicerae flos extract on cultured C6 glioma cells damaged by aluminum of dementia. Kor J Clin Lab Sci. 2017;49:271-278. https://doi.org/10.15324/kjcls.2017.49.3.271
  3. Jung JY, Joe DY, Park SH, Seo YM. Protective effect of Rumex crispus L. extract on cultured NIH3T3 fibroblasts damaged by cadmium of environmental pollutant. J Kor Soc People Plants Environ. 2014;17:15-21. https://doi.org/10.11628/ksppe.2014.17.1.015
  4. Kim SJ, Yu YW, Lee JK. Cytotoxicity and protective effect of Portulaca oleracea L. extract on cultured neuroglioma cells damaged by aluminum of dementia-induced agent. J Kor Soc People Plants Environ. 2013;16:251-256. https://doi.org/10.11628/ksppe.2013.16.5.251
  5. Deloncle R, Guillard O. Mechanism of Alzheimer's disease: arguments for a neurotransmitter-aluminum complex implication. Neurochem Res. 1990;15: 1239-1245. https://doi.org/10.1007/BF01208586
  6. Deloncle R, Guillard O, Clanet F, Courtois P, Piriou A. Aluminum transfer as glutamate complex through blood-brain barrier. Biological Trace Element Res. 1990;25:39-45. https://doi.org/10.1007/BF02990262
  7. Kim YS, Lee MH, Wisniewski HM. Aluminum induced reversible changes in permeability of the BBB to 14C-sucrose. Brain Res. 1986;337:286-291.
  8. Jung JY, Joe DY, Park SH, Seo YM. Protective effect of Rumex crispus L. extract on cultured NIH3T3 fibroblasts damaged by cadmium of environmental pollutant. J Kor Soc People Plants Environ. 2014;17:15-21. https://doi.org/10.11628/ksppe.2014.17.1.015
  9. Kim TY, Jekal SJ. Antioxidative effect of Chelidonium majus extract on cultured NIH3T3 fibroblasts injured by cadmium chloride of toxicant. Kor J Clin Lab Sci. 2016;48:1-7. https://doi.org/10.15324/kjcls.2016.48.1.1.
  10. Li YL, Gan GP, Zhang HZ, Wu HZ, Li CL, Hung YP, et al. A flavonoid glycoside isolated from Smilax china L. rhizome in vitro anticancer effects on human cancer cell lines. J Ethnopharmacol. 2007;113:115-124. https://doi.org/10.1016/j.jep.2007.05.016
  11. Ma J, Luo XD, Protiva P, Tang H, Ma C, Basile MJ, et al. Bioactive novel polyphenols from the fruit of Manikarazapota(Sapodolla). J Nat Rrod. 2003;66:983-986.
  12. Chang JK. The wild plants for human body. 2nd ed. Seoul: Nexus publishing; 2003. p478.
  13. Shin MK. Herbalogy of extracting therapy at traditional herb medicine. 1st ed. Iksan: Jindalrae publishing; 2007. p602-603.
  14. Wang LTY, Lian TW, Hung TJ, Yen JH, Wu MJ. Distingtive antioxidant and antiinflammatory effects of flavonols. J Agric Food Chem. 2006;54;9798-9804. https://doi.org/10.1021/jf0620719
  15. Jo EH, Lee JW, Park SY, Kim PP, Choi KH, Eom IC. Pre-validation of colony forming efficiency assay for assessing the cytotoxicity of nanomaterials. J Environ Health Sci. 2015;41:17-23.
  16. Hay R, Caputo J, et al. ATCC catalogue of cell lines and hybridomas. 7th ed. Rockville: American TC Collection; 992. p63-162.
  17. Lee KS. Dictionary of biochemical molecular biology. 1st ed. Iksan: Daewhak publishing; 2000. p23.
  18. Kim SE, Yang BS, Choi YS. Cytotoxicity and effect of Lonicerae flos extract against chromium, contact dermatitis-induced agent in cultured human skin fibroblasts. J Kor Soc People plants Environ. 2012;15:407-412. https://doi.org/10.11628/ksppe.2012.15.6.407
  19. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth. 1983;65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  20. Lee SH, Jung IJ, Jang HS. The antioxidative effect of Ecliptaprostrata L. extract on cultured NIH3T3 fibroblasts injured by manganese-induced cytotoxicity. Biomed Sci Let. 2018;24:1-8. https://doi.org/10.15616/BSL.2018.24.4.357.
  21. Lee SH, Seo YM. Alleviating effects of Euphorbiae humifusae L. extract on the neurotoxicity induced by lead. Kor J Clin Lab Sci. 2018;50:501-510. https://doi.org/10.15324/kjcls.2018.50.4.501
  22. Association of official analytical chemists. Official methods of analysis 18th ed. [Internet]. Arlington: Association of official analytical chemists; 2005 [cited 2019 May 16]. Available from: https://law.resource.org/pub/us/cfr/ibr/002/aoac.methods.1.1990.pdf.
  23. Nieva Moreno MI, Isla MI, Sampietro AR, Vattuone MA. Comparison of the three radical-scavenging activity of propolis from several regions of Argentina. J Ethmopharmacol. 2000;71:109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  24. Blois MS. Antioxidant determination by the use of a stable free radical. Nature. 1958;26:1199-1200. https://doi.org/10.1038/1811199a0
  25. Kikuzaki H, Nakatani N. Antioxidant effects of some ginger constituents. J Food Sci. 1993;58:1410-1420. https://doi.org/10.1111/j.1365-2621.1993.tb06194.x.
  26. Borenfreund E, Puerner JA. A simple quantitative procedure using monolayer culture for cytotoxicity assay (HTD/NR-90). J Tiss Cult Meth. 1984;9:7-9. https://doi.org/10.1007/BF01666038
  27. Son YW, Rim YS, Seo YM. Protective effect of NMDA receptor antagonist on the neurotoxicity induced by lead as an environmental pollutant. J Kor Soc Occup Environ Hyg. 2017;27: 193-200. https://doi.org/10.15269/JKSOEH.2017.27.3.193.
  28. Ha DH, Yang HW, Lee JH, Lee KC. Effect of NMDA receptor antagonist on osteoblasts damaged by methylmercuric chloride. J Physiol & Pathol Korean Med. 2003;17:412-415.
  29. Waltz JA, Knowlton BJ, Boone KB, Back-Madruga C, McPherson S, et al. Relational integration and executive function in Alzheimer's disease. Neuropsychol. 2004;18:296-302. https://doi.org/10.1037/0894-4105.18.2.296
  30. Oh YH, Park ST. Protective effect of Prunella vulgaris L. var lilacina Nakai extract on cultured NIH3T3 fibroblasts damaged by mutagenic mercury-induced toxicity. J Kor Soc People Plants Environ. 2015;18:41-46. https://doi.org/10.11628/ksppe.2015.18.1.041
  31. Seo YM, Kim NS. Effect of superoxide dismutase on oxidative stress of reactive oxygen species in cultured human skin melanocyte. J Kor Soc Occp Environ Hyg. 2009;19:261-269.
  32. Gracia-Lopez D, Cuevas MJ, Almar M, Lima E, Paz JA, Gonzalez-Gallego J. Effects of eccentric exercise on NF-kB activation in blood monolayer cells. Med Sci Sports Exerc. 2007;39:653-664. https://doi.org/10.1249/mss.0b013e31802f04f6
  33. Kim MS, Seo YM, Park ST. Antioxidant effect of kaempferol on cultured human skin fibroblasts damaged by methylmercuric chloride. J Kor People Plants Environ. 2010;13:23-29.
  34. Graefe EU, Wittig J, Mueller S. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J Clin Pharmacol. 2001;41:492-499. https://doi.org/10.1177/00912700122010366
  35. Kim YR, Jang SJ. HO-1 mediates intracellular calcium modulation and inhibits TNF-a-induced NF-kB activity in human colonic epithelial cell line. Kor J Ana. 2006;39:401406.
  36. Pellegrini-Giampietro DE, Cherici G, Alesiani M, Carrla V, Moroni F. Excitatory amino acid and free radicals formation may cooperate in the genesis of ischemia-induced neuronal damage. J Neurosci. 1990;10:1035-1041. https://doi.org/10.1523/JNEUROSCI.10-03-01035.1990