Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.11.969

Oxya chinensis sinuosa Mishchenko (Grasshopper) Extract Protects INS-1 Pancreatic β cells against Glucotoxicity-induced Apoptosis and Oxidative Stress  

Park, Jae Eun (Department of Food Science and Nutrition, Pusan National University)
Han, Ji Sook (Department of Food Science and Nutrition, Pusan National University)
Publication Information
Journal of Life Science / v.31, no.11, 2021 , pp. 969-979 More about this Journal
Abstract
Type 2 diabetes is a serious chronic metabolic disease, and the goal of diabetes treatment is to keep blood glucose at a normal level and prevent complications from diabetes. Hyperglycemia is a key pathologic feature of type 2 diabetes that mainly results from insulin resistance and pancreatic β-cell dysfunction. Chronic exposure of β-cells to elevated glucose concentrations induces glucotoxicity. In this study, we examined whether an 80% ethanol extract of Oxya chinensis sinuosa Mishchenko (OEE) protected INS-1 pancreatic β-cells against glucotoxicity-induced apoptosis and oxidative stress. Pretreatment with a high concentration of glucose (high glucose = 30 mM) induced glucotoxicity and apoptosis of INS-1 pancreatic β cells. Treatment with OEE significantly increased cell viability. Treatment with 0.01-0.20 mg/ml OEE dose dependently decreased intracellular reactive oxygen species, lipid peroxidation, and nitric oxide levels and increased insulin secretion in high glucose-pretreated INS-1 β cells. OEE also significantly increased the activities of antioxidant enzymes in response to high-glucose-induced oxidative stress. Moreover, OEE treatment significantly reduced the expressions of pro-apoptotic proteins, including Bax, cytochrome C, caspase-3, and caspase-9, and increased anti-apoptotic Bcl-2 expression. Apoptotic cells were identified using Annexin-V/propidium iodide staining, which revealed that treatment with OEE significantly reduced high-glucose-induced apoptosis. These findings implicate OEE as a valuable functional food in protecting pancreatic β-cells against glucotoxicity-induced apoptosis and oxidative stress.
Keywords
Apoptosis; INS-1 pancreatic ${\beta}$ cells; oxidative stress; Oxya chinensis sinuosa Mishchenko; type 2 diabetes;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Dutta, P., Dey, T., Dihingia, A., Manna, P. and Kalita, J. 2017. Antioxidant and glucose metabolizing potential of edible insect, Brachytrupes orientalis via modulating Nrf2/AMPK/GLUT4 signaling pathway. Biomed. Pharmacother. 95, 556-563.   DOI
2 Maedler, K., Sergeev, P., Ris, F., Oberholzer, J., JollerJemelka, H. I., Spinas, G. A., Kaiser, N., Halban, P. A. and Donath, M. Y. 2002. Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest. 110, 851-860.   DOI
3 Wang, D. Q., Yang, J. and Xu, J. 2020. Polyphenol and flavonoids content and antioxidant activity of different solvent extracts from Artemisia argyi. Asian J. Immunol. 3, 30-35.
4 Kawahito, S., Kitahata, H. and Oshita, S. 2009. Problems associated with glucose toxicity: Role of hyperglycemia-induced oxidative stress. World J. Gastroenterol. 15, 4137.   DOI
5 Kim, H. J., Kang, S. J., Kim, S. G., Kim, J. E., Koo, H. Y., Park, J. H. and Choi, H. C. 2015. Antioxidant activity and antimicrobial activity of the grasshopper, Oxya chinensissinuosa. J. Seric. Entomol. Sci. 53, 130-134.   DOI
6 Kim, T. S., Lee, J. H., Choi, B. D. and Ryu, H. S. 1987. Nutritional value of dried paddy grasshopper, Oxya chinensis formosana. J. Kor. Soc. Food Nutr. 16, 98-104.
7 Kim, Y. S. and Kwon, T. D. 2018. Effects of grasshopper diet and treadmill exercise performance of blood lipid profile and antioxidant enzyme in rats. Kor. J. Sports Sci. 27, 1605-1614.   DOI
8 Lenzen, S. 2008. Oxidative stress: the vulnerable β-cell. Biochem. Soc. Ttans. 36, 343-347.   DOI
9 Mcdaniel, M. L., Kwon, G., Hill, J. R., Marshall, C. A. and Corbett, J. A. 1996. Cytokines and nitric oxide in islet inflammation and diabetes. Exp. Biol. Med. 211, 24-32.   DOI
10 Dhanasekaran, D. N. and Reddy, E. P. 2008. JNK signaling in apoptosis. Oncogene 27, 6245-6251.   DOI
11 Du, X., Stockklauser, K. and Rosen, P. 1999. Generation of reactive oxygen intermediates, activation of NF-κB, and induction of apoptosis in human endothelial cells by glucose: role of nitric oxide synthase? Free Radic. Biol. Med. 27, 752-763.   DOI
12 Hink, U., Li, H., Mollnau, H., Oelze, M., Matheis, E., Hartmann, M., Skatchkov, M., Thaiss, F., Stahl, R. A. K., Warnholtz, A., Meinertz, T., Griendling, K., Harrison, D. G., Forstermann, U. and Munzel, T. 2001. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ. Res. 88, 14-22.   DOI
13 Im, A. R., Park, I., Ji, K. Y., Lee, J. Y., Kim, K. M., Na, M. and Chae, S. 2019. Protective effects of Oxya chinensis sinuosa Mishchenko against ultraviolet B-induced photodamage in hairless mice. BMC Complement. Altern. Med. 19, 286.   DOI
14 Kaneto, H., Nakatani, Y., Kawamori, D., Miyatsuka, T., Matsuoka, T. A., Matsuhisa, M. and Yamasaki, Y. 2005. Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic beta-cell dysfunction and insulin resistance. Int. J. Biochem. Cell Biol. 37, 1595-1608.   DOI
15 Kaplan, M., Aviram, M. and Hayek, T. 2012. Oxidative stress and macrophage foam cell formation during diabetes mellitus-induced atherogenesis: role of insulin therapy. Pharmacol. Ther. 136, 175-185.   DOI
16 Oh, H. G., Lee, H. Y., Kim, J. H., Kang, Y. R., Moon, D. I. and Seo, M. Y. 2012. Effects of male silkworm pupa powder on the erectile dysfunction by chronic ethanol consumption in rats. Lab. Anim. Res. 28, 83-90.   DOI
17 Paolisso, G. and Giugliano, D. 1996. Oxidative stress and insulin action. Is there a relationship? Diabetologia 39, 357-363.   DOI
18 Park, J. Y., Heo, J. C., Woo, S. U., Yun, C. Y. and Kang, S. W. 2006. Anti-inflammatory and cellular protective effects on hydrogen peroxideinduced cytotoxicity of grasshopper extracts. Kor. J. Food Preserv. 13, 796-802.
19 Rajarajeswari, N. and Pari, L. 2011. Antioxidant role of coumarin on streptozotocin-nicotinamide-induced type 2 diabetic rats. J. Biochem. Molecul. Toxicol. 25, 355-361.   DOI
20 Rashid, M. A., Lee, S., Tak, E., Lee, J., Choi, T. G., Lee, J. W., Kim, J. B., Youn, J. H., Kang, I., Ha, J. and Kim, S. S. 2010. Carbonyl reductase 1 protects pancreatic beta-cells against oxidative stress-induced apoptosis in glucotoxicity and glucolipotoxicity. Free Radic. Biol. Med. 49, 1522-1533.   DOI
21 Buszewska-Forajta, M., Struck-Lewicka, W., Bujak, R., Siluk, D. and Kaliszan, R. 2014. Determination of water-soluble components of abdominal secretion of grasshopper (Chorthippus spp.) by GC/MS/MS in search for potential wound healing agents. Chromatographia 77, 1091-1102.   DOI
22 Ceriello, A. 2002. Oxidative stress and glycemic regulation. Metabolism 49, 27-29.   DOI
23 Sakai, K., Matsumoto, K., Nishikawa, T., Suefuji, M., Nakamaru, K., Hirashima, Y., Kawashima, J., Shirotani, T., Ichinose, K., Brownlee, M. and Araki, E. 2003. Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic beta-cells. Biochem. Biophys. Res. Commun. 300, 216-222.   DOI
24 Suryanarayana, P., Satyanarayana, A., Balakrishna, N., Kumar, P. U. and Reddy, G. B. 2007. Effect of turmeric and curcumin on oxidative stress and antioxidant enzymes in streptozotocin-induced diabetic rat. Med. Sci. Monit. 13, BR286-BR292.
25 Vermes, I., Haanen, C. and Reutelingsperger, C. 2000. Flow cytometry of apoptotic cell death. J. Immunol. Methods 243, 167-190.   DOI
26 Pacher, P., Beckman, J. S. and Liaudet, L. 2007. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315-424.   DOI
27 Yoon, Y. I., Chung, M. Y., Hwang, J. S., Goo, T. W., Ahn, M. Y., Lee, Y. B., Han, M. S. and Yun, E. Y. 2014. Anti-inflammatory effect of Oxya chinensis sinuosa ethanol extract in LPS-induced RAW 264.7 cells. J. Life Sci. 24, 370-376.   DOI
28 Kim, I. W., Markkandan, K., Lee, J. H., Subramaniyam, S., Yoo, S., Park, J. and Hwang, J. S. 2016. Transcriptome profiling and in silico analysis of the antimicrobial peptides of the grasshopper Oxya chinensis sinuosa. J. Microbiol. Biotechnol. 26, 1863-1870.   DOI
29 Kong, Q. and Lin, C. L. 2010, Oxidative damage to RNA: mechanisms, consequences, and diseases. Cell Mol. Life Sci. 67, 1817-1829.   DOI
30 Marshak, S., Leibowitz, G., Bertuzzi, F., Socci, C., Kaiser, N., Gross, D. J., Cerasi, E. and Melloul, D. 1999. Impaired beta-cell functions induced by chronic exposure of cultured human pancreatic islets to high glucose. Diabetes 48, 1230-1236.   DOI
31 Poitout, V. and Robertson, R. P. 2002. Minireview: secondary beta-cell failure in type 2 diabetes-convergence of glucotoxicity and lipotoxicity. Endocrinology 143, 339-342.   DOI
32 Robertson, R. P. 2004. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet β cells in diabetes. J. Biol. Chem. 279, 42351-42354.   DOI
33 Tiedge, M., Lortz, S., Drinkgern, J. and Lenzen, S. 1997. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin producing cells. Diabetes 46, 1733-1742.   DOI
34 Kappus, H. 1987. Oxidative stress in chemical toxicity. Arch. Toxicol. 60, 144-149.   DOI
35 Brownlee, M. 2001. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813-820.   DOI
36 Del, S., Grupillo, M., Masini, M., Lupi, R., Bugliani, M., Torri, S., Boggi, U., Del, M., Vistoli, F., Mosca, F., Del, S. and Marchetti, P. 2007. Gliclazide protects human islet beta-cells from apoptosis induced by intermittent high glucose. Diabetes Metab. Res. Rev. 23, 234-238.   DOI
37 Jacqueminet, S., Briaud, I., Rouault, C., Reach, G. and Poitout, V. 2002. Inhibition of insulin gene expression by long-term exposure of pancreatic beta cells to palmitate is dependent on the presence of a stimulatory glucose concentration. Metabolism 49, 532-536.   DOI