• Title/Summary/Keyword: Partial metric

Search Result 62, Processing Time 0.021 seconds

MULTIVARIATE COUPLED FIXED POINT THEOREMS ON ORDERED PARTIAL METRIC SPACES

  • Lee, Hosoo;Kim, Sejong
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1189-1207
    • /
    • 2014
  • A partial metric, also called a nonzero self-distance, is motivated by experience from computer science. Besides a lot of properties of partial metric analogous to those of metric, fixed point theorems in partial metric spaces have been studied recently. We establish several kinds of extended fixed point theorems in ordered partial metric spaces with higher dimension under generalized notions of mixed monotone mappings.

FIXED POINTS FOR SOME CONTRACTIVE MAPPING IN PARTIAL METRIC SPACES

  • Kim, Chang Il;Han, Giljun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.387-394
    • /
    • 2020
  • Matthews introduced the concepts of partial metric spaces and proved the Banach fixed point theorem in complete partial metric spaces. Dukic, Kadelburg, and Radenovic proved fixed point theorems for Geraghty-type mappings in complete partial metric spaces. In this paper, we prove the fixed point theorem for some contractive mapping in a complete partial metric space.

COINCIDENCE THEOREMS FOR COMPARABLE GENERALIZED NON LINEAR CONTRACTIONS IN ORDERED PARTIAL METRIC SPACES

  • Dimri, Ramesh Chandra;Prasad, Gopi
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.375-387
    • /
    • 2017
  • In this paper, we prove some coincidence point theorems involving ${\varphi}-contraction$ in ordered partial metric spaces. We also extend newly introduced notion of g-comparability of a pair of maps for linear contraction in ordered metric spaces to non-linear contraction in ordered partial metric spaces. Thus, our results extend, modify and generalize some recent well known coincidence point theorems of ordered metric spaces.

FIXED POINT THEOREMS IN ORDERED DUALISTIC PARTIAL METRIC SPACES

  • Arshad, Muhammad;Nazam, Muhammad;Beg, Ismat
    • Korean Journal of Mathematics
    • /
    • v.24 no.2
    • /
    • pp.169-179
    • /
    • 2016
  • In this article, we introduce the concept of ordered dualistic partial metric spaces and establish an order relation on quasi dualistic partial metric spaces. Later on, using this order relation, we prove xed point theorems for single and multivalued mappings. We support our results with some illustrative examples.

A FIXED POINT THEOREM ON PARTIAL METRIC SPACES SATISFYING AN IMPLICIT RELATION

  • Chang Il Kim;Gil Jun Han
    • The Pure and Applied Mathematics
    • /
    • v.30 no.1
    • /
    • pp.25-34
    • /
    • 2023
  • Popa [14] proved the common fixed point theorem using implicit relations. Saluja [17] proved a fixed point theorem on complete partial metric spaces satisfying an implicit relation. In this paper, we prove a fixed point theorem on complete partial metric space satisfying another implicit relation.

BEST APPROXIMATIONS FOR MULTIMAPS ON ABSTRACT CONVEX SPACES

  • Park, Sehie
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.165-175
    • /
    • 2021
  • In this article we derive some best approximation theorems for multimaps in abstract convex metric spaces. We are based on generalized KKM maps due to Kassay-Kolumbán, Chang-Zhang, and studied by Park, Kim-Park, Park-Lee, and Lee. Our main results are extensions of a recent work of Mitrović-Hussain-Sen-Radenović on G-convex metric spaces to partial KKM metric spaces. We also recall known works related to single-valued maps, and introduce new partial KKM metric spaces which can be applied our new results.