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MULTIVARIATE COUPLED FIXED POINT THEOREMS ON

ORDERED PARTIAL METRIC SPACES

Hosoo Lee and Sejong Kim

Abstract. A partial metric, also called a nonzero self-distance, is moti-
vated by experience from computer science. Besides a lot of properties of
partial metric analogous to those of metric, fixed point theorems in partial
metric spaces have been studied recently. We establish several kinds of ex-
tended fixed point theorems in ordered partial metric spaces with higher
dimension under generalized notions of mixed monotone mappings.

1. Introduction

The fixed point theory has been applied for the study of nonlinear analy-
sis, and its results have been developed in various areas of mathematics and
engineering. In 1994 S. Matthews [15] introduced the notion of partial metric
space motivated by experience from computer science, and extended the Ba-
nach contraction principle to the setting of partial metric spaces. In several
decades many scholars studied fixed point theorems in partial metric spaces
(see [2, 17, 18, 20, 22, 27]).

Bhaskar and Lakshmikantham [6] introduced the notions of a mixed mono-
tone mapping and a coupled fixed point, and proved some coupled fixed point
theorems for mixed mappings in ordered metric spaces. Many different kinds
of coupled fixed point theorems with applications have been studied (see [1,
7, 11, 13, 14, 24, 26]). A few years later Harjani, López, and Sadarangani [8]
have developed fixed point theorems for mixed monotone operators and have
applied to certain integral equations. In this article we generalize the concept
of coupled fixed point and mixed monotone mapping, and show some fixed
point theorems in ordered partial metric spaces.

First, we recall some definitions and properties of partial metric, also called
a nonzero self-distance (see [15, 25]).

Definition 1.1. A partial metric on a nonempty set X is a function p : X ×
X → [0,∞) such that for all x, y, z ∈ X :
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(P1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(P2) p(x, x) ≤ p(x, y),
(P3) p(x, y) = p(y, x),
(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is
a partial metric on X .

Note that the self-distance of any point need not be zero, and hence, the
idea of generalizing metrics is that a metric on a nonempty set X is precisely
a partial metric p on X such that p(x, x) = 0 for any x ∈ X. We give some
examples of a partial metric space.

(1) ([0,∞), p), where p(x, y) = max{x, y} for all x, y ∈ [0,∞).
(2) (Rn, p), where p(x,y) = ‖x−y‖+a for some a ≥ 0 and for all x,y ∈ R

n.
(3) LetX = {[a, b] : a, b ∈ R, a ≤ b} and define p([a, b], [c, d]) = max{b, d}−

min{a, c}. Then, (X, p) is a partial metric space.

Furthermore, there is an elegant way to construct a metric space from a
partial metric space (see [25, Section 1]).

Lemma 1.1. Let (X, p) be a partial metric space, and let dp : X×X → [0,∞)
be defined by

(1.1) dp(x, y) = 2p(x, y)− p(x, x) − p(y, y), ∀x, y ∈ X.

Then (X, dp) is a metric space.

Definition 1.2. Let (X, p) be a partial metric space. For any x ∈ X and
ǫ > 0, we define the open and closed ball for the partial metric p respectively
by setting

Bǫ(x) = {y ∈ X : p(x, y) < ǫ}, Bǫ(x) = {y ∈ X : p(x, y) ≤ ǫ}.

In a partial metric space (X, p), the set of open balls is the basis of a T0
topology on X , called the partial metric topology and denoted by τp.

Definition 1.3. Let (X, p) be a partial metric space. Then

(i) A sequence {xn} in the space (X, p) converges to x ∈ X , written as
lim
n→∞

xn = x, if for any ǫ > 0 such that x ∈ Bǫ(x), there exists N ≥ 0

so that for any n ≥ N, xn ∈ Bǫ(x).
(ii) A sequence {xn} in the space (X, p) is said to be a Cauchy sequence if

lim
n,m→∞

p(xn, xm) <∞.

(iii) The partial metric space (X, p) is said to be complete if every Cauchy
sequence {xn} in X converges with respect to τp to a point x ∈ X such
that p(x, x) = lim

n,m→∞

p(xn, xm).

(iv) A mapping F : X → X is said to be continuous at x0 ∈ X if for every
ǫ > 0, there exists δ > 0 such that F (Bδ(x0)) ⊆ Bǫ(F (x0)).
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The following lemma on a partial metric space can be derived easily (see,
e.g., [2, 15, 17, 18, 27]).

Lemma 1.2. Let (X, p) be a partial metric space. Then the following are

satisfied.

(i) A sequence {xn} in the space (X, p) converges to a point x ∈ X if and

only if p(x, x) = lim
n→∞

p(x, xn) = 0.

(ii) A sequence {xn} in the space (X, p) is a Cauchy sequence if and only

if it is a Cauchy sequence in the metric space (X, dp).
(iii) The partial metric space (X, p) is complete if and only if the metric

space (X, dp) is complete. Moreover,

p(x, x) = lim
n,m→∞

p(xn, xm) = lim
n→∞

p(x, xn) ⇔ lim
n→∞

dp(xn, x) = 0.

(iv) Suppose that F : X → X is continuous at x0 ∈ X. Then, for each

sequence {xn} in X, xn → x0 in τp implies F (xn) → F (x0) in τp.

2. Extended notions of mixed monotone mapping and fixed point

In this section we introduce certain type of mixed monotone property and
fixed point of the mapping F : Xn → X with respect to Φ = (ϕ1, . . . , ϕn),
where I and J are nonempty disjoint subsets of S = {1, 2, . . . , n} with S = I∪J ,
and Φ is an n-tuple of self-maps on S with

ϕi(I) ⊂ I, ϕi(J) ⊂ J, ϕj(I) ⊂ J, ϕj(J) ⊂ I

for i ∈ I and for j ∈ J.

Definition 2.1. Let (X,≤) be a partially ordered set, n(≥ 2) a positive integer,
I and J nonempty disjoint subsets of S = {1, 2, . . . , n} with S = I ∪ J , and
F : Xn → X a given mapping. We say that F has the (I, J)-mixed monotone

property if F (x1, . . . , xn) is monotone nondecreasing in each component xi for
i ∈ I, and monotone nonincreasing in each component xj for j ∈ J.

The above definition is a generalization of m-mixed monotone property for
the mapping F : Xn → X introduced by M. Berzig and B. Samet [5], where
n ≥ 2 and 1 ≤ m < n.

Definition 2.2. Let X be a nonempty set, n(≥ 2) a positive integer, I and J
nonempty disjoint subsets of S = {1, 2, . . . , n} with S = I∪J , and F : Xn → X

a given mapping. Let Φ = (ϕ1, ϕ2, . . . , ϕn) be an n-tuple of self-maps on S

with

ϕi(I) ⊂ I, ϕi(J) ⊂ J, ϕj(I) ⊂ J, ϕj(J) ⊂ I

for i ∈ I and j ∈ J. An element x = (x1, x2, . . . , xn) ∈ Xn is called a (I, J)-fixed
point of F with respect to Φ if

(2.1) xk = F (xϕk(1), . . . , xϕk(n)) for all k ∈ S.
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Remark 2.1. We explain that the above definition is a generalization of several
kinds of fixed points.

(1) (See [6]). An element (x, y) ∈ X2 is called a coupled fixed point of a
mapping F : X2 → X if

x = F (x, y) and y = F (y, x).

In Definition 2.2 for n = 2, let I = {1} and J = {2}. Consider
Φ2 = (ϕ1, ϕ2) defined by

ϕ1(1) = 1, ϕ1(2) = 2,

ϕ2(1) = 2, ϕ2(2) = 1.

Thus, a coupled fixed point is the (I, J)-fixed point of F with respect
to Φ2.

(2) (See [4]). An element (x, y, z) ∈ X3 is called a triple fixed point of a
mapping F : X3 → X if

F (x, y, z) = x, F (y, x, y) = y and F (z, y, x) = z.

In Definition 2.2 for n = 3, let I = {1, 3} and J = {2}. Then a
triple fixed point is the (I, J)-fixed point of F with respect to Φ3 =
(φ1, φ2, φ3) defined by

φ1(1) = 1, φ1(2) = 2, φ1(3) = 3,
φ2(1) = 2, φ2(2) = 1, φ2(3) = 2,
φ3(1) = 3, φ3(2) = 2, φ3(3) = 1.

(3) (See [5]). An element (x, y, z, w) ∈ X4 is called a quadruple fixed point

of a mapping F : X4 → X if

F (x, y, z, w) = x, F (x, y, w, z) = y, F (z, w, y, x) = z, and F (z, w, x, y) = w.

In Definition 2.2 for n = 4, let I = {1, 2} and J = {3, 4}. Then
a quadruple fixed point is the (I, J)-fixed point of F with respect to
Φ4 = (ψ1, ψ2, ψ3, ψ4) defined by

ψ1(1) = 1, ψ1(2) = 2, ψ1(3) = 3, ψ1(4) = 4,
ψ2(1) = 1, ψ2(2) = 2, ψ2(3) = 4, ψ2(4) = 3,
ψ3(1) = 3, ψ3(2) = 4, ψ3(3) = 2, ψ3(4) = 1,
ψ4(1) = 3, ψ4(2) = 4, ψ4(3) = 1, ψ4(4) = 2.

Definition 2.3. For a positive integer k, an element x ∈ X is called a fixed

point of order n of F : Xn → X if F (x, x, . . . , x) = x.

3. Main results

Let (X,≤) be a partially ordered set, n(≥ 2) a positive integer, and I, J

nonempty disjoint subsets of S = {1, 2, . . . , n} with S = I ∪ J . We endow the
product set Xn with the partial order ≤I defined by

(x1, . . . , xn) ≤I (y1, . . . , yn) ⇐⇒

{

xi ≤ yi, i ∈ I

xj ≥ yj , j ∈ J.
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For x = (x1, x2, . . . , xn) ∈ Xn and a self-map ϕ on S, we denote for the
notational convenience

xϕ :=
(

xϕ(1), xϕ(2), . . . , xϕ(n)

)

.

Our first result is following.

Theorem 3.1. Let (X,≤) be a partially ordered set and p a partial metric

on X such that (X, p) be a complete partial metric space. Let n(≥ 2) be an

integer, I and J nonempty disjoint subsets of S = {1, 2, . . . , n} with S = I ∪J ,
F : Xn → X a given mapping, and let Φ = (ϕ1, ϕ2, . . . , ϕn) be an n-tuple of

self-maps on S with

(3.1) ϕi(I) ⊂ I, ϕi(J) ⊂ J, ϕj(I) ⊂ J, ϕj(J) ⊂ I

for i ∈ I and j ∈ J .

Suppose that the following conditions hold:

(i) F is continuous;
(ii) F has the (I, J)-mixed monotone property;
(iii) for each k ∈ S, there exists (p, q) ∈ S × S such that k = ϕp(q);

(iv) there exists x(0) =
(

x
(0)
1 , . . . , x

(0)
n

)

∈ Xn such that

(3.2)
x
(0)
i ≤ F

(

x
(0)
ϕi(1)

, . . . , x
(0)
ϕi(n)

)

, i ∈ I,

x
(0)
j ≥ F

(

x
(0)
ϕj(1)

, . . . , x
(0)
ϕj(n)

)

, j ∈ J ;

(v) there exist altering distance functions φ and ψ such that

(3.3) φ(p(F (x), F (y))) ≤ φ

(

max
k∈S

{p(xk, yk)}

)

− ψ

(

max
k∈S

{p(xk, yk)}

)

for all x = (x1, . . . , xn) ≤I y = (y1, . . . , yn).

Then F has an (I, J)-fixed point x = (x1, x2, . . . , xn) of F with respect to Φ.

Proof. We consider the sequences
{

x(r)
}∞

r=0
defined by

x(r) =
(

x
(r)
1 , . . . , x(r)n

)

, r ∈ N,

where x
(r)
k = F

(

x
(r−1)
ϕk

)

= F
(

x
(r−1)
ϕk(1)

, x
(r−1)
ϕk(2)

, . . . , x
(r−1)
ϕk(n)

)

for all k = 1, 2, . . . , n.

In order that the proof is more comprehensive, we will divide it in several
steps.
Step 1.

{

x(r)
}∞

r=0
is the nondecreasing sequence with respect to ≤I , that is,

{x
(r)
i }∞r=0, i ∈ I are nondecreasing sequences, and

{x
(r)
j }∞r=0, j ∈ J are nonincreasing sequences.

We will show by induction that

x
(r)
i ≥ x

(r−1)
i and x

(r)
j ≤ x

(r−1)
j

for all i ∈ I and for all j ∈ J .
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By (3.2), we have

x
(1)
i = F

(

x(0)
ϕi

)

≥ x
(0)
i and x

(1)
j = F

(

x(0)
ϕj

)

≤ x
(0)
j .

Again by the induction hypothesis and the (I, J)-mixed monotone property of
F , we have

x
(r+1)
i = F

(

x(r)
ϕi

)

≥ F
(

x(r−1)
ϕi

)

= x
(r)
i

and

x
(r+1)
j = F

(

x(r)
ϕj

)

≤ F
(

x(r−1)
ϕj

)

= x
(r)
j .

This proves our claim.

Step 2. For any k ∈ S and r ≥ 1, x
(r)
ϕk is comparable to x

(r−1)
ϕk with respect to

≤I .
Suppose k ∈ I. Then by (3.1),

ϕk(i) ∈ I for i ∈ I and ϕk(j) ∈ J for j ∈ J

and by the definition of x
(r)
ϕk

and Step 1, we get

(3.4)

(

x
(r)
ϕk

)

i
= x

(r)
ϕk(i)

≥ x
(r−1)
ϕk(i)

=
(

x
(r−1)
ϕk

)

i
for i ∈ I,

(

x
(r)
ϕk

)

j
= x

(r)
ϕk(j)

≤ x
(r−1)
ϕk(j)

=
(

x
(r−1)
ϕk

)

j
for j ∈ J.

Consequently, x
(r)
ϕk

≥I x
(r−1)
ϕk

. The case of k ∈ J can be similarly proven.

Step 3. lim
r→∞

p
(

x
(r+1)
k , x

(r)
k

)

= 0 for each k ∈ S.

For r ≥ 1 and k ∈ S we denote

D
(r)
k := max

l∈S

{

p
(

x
(r)
ϕk(l)

, x
(r−1)
ϕk(l)

)}

and E(r) := max
k∈S

{

p
(

x
(r)
k , x

(r−1)
k

)}

.

Then, for each k ∈ S,

D
(r)
k ≤ E(r),

because ϕk(S) ⊂ S.

From the contractive condition (v) and Step 2, we obtain

(3.5)

φ
(

p
(

x
(r+1)
k , x

(r)
k

))

= φ
(

p
(

F
(

x
(r)
ϕk

)

, F
(

x
(r−1)
ϕk

)))

≤ φ
(

D
(r)
k

)

− ψ
(

D
(r)
k

)

≤ φ
(

D
(r)
k

)

≤ φ
(

E(r)
)

.

Using the fact that φ is nondecreasing, we have

p
(

x
(r+1)
k , x

(r)
k

)

≤ E(r).

Hence,

E(r+1) = max
k∈S

{

p
(

x
(r+1)
k , x

(r)
k

)}

≤ E(r),
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and thus, the sequence
{

E(r)
}

is decreasing and nonnegative. This implies that
there exists α ≥ 0 such that

lim
r→∞

E(r) = α.

It is easily seen that if φ : [0,∞) → [0,∞) is nondecreasing, φ(max{a1, a2, . . . ,
an}) = max{φ(a1), φ(a2), . . . , φ(an)} for a1, a2, . . . , an ∈ [0,∞). Taking into
account this and (3.5) we get

φ
(

E(r+1)
)

≤ φ
(

D
(r)
k

)

− ψ
(

D
(r)
k

)

≤ φ
(

D
(r)
k

)

≤ φ
(

E(r)
)

.

Since φ is a continuous function, letting r → +∞ in the above inequalities
yields

φ (α) ≤ lim
r→∞

(

φ
(

D
(r)
k

)

− ψ
(

D
(r)
k

))

≤ lim
r→∞

φ
(

D
(r)
k

)

≤ φ (α) .

The squeeze theorem gives us

lim
r→∞

(

φ
(

D
(r)
k

)

− ψ
(

D
(r)
k

))

= lim
r→∞

φ
(

D
(r)
k

)

= φ (α) ,

and this implies lim
r→∞

ψ(D
(r)
k ) = 0. Since ψ is an altering distance function,

(3.6) lim
r→∞

D
(r)
k = lim

r→∞

max
l∈S

{

p
(

x
(r)
ϕk(l)

, x
(r−1)
ϕk(l)

)}

= 0, k ∈ S.

From assumption (iii) we have that for each k ∈ S, there exists (k1, k2) ∈ S×S
such that ϕk1

(k2) = k. Thus, by (3.6), we obtain

0 ≤ lim
r→∞

p
(

x
(r+1)
k , x

(r)
k

)

= lim
r→∞

p
(

x
(r+1)
ϕk1

(k2)
, x

(r)
ϕk1

(k2)

)

≤ lim
r→∞

max
l∈S

{

p
(

x
(r)
ϕk1

(l), x
(r−1)
ϕk1

(l)

)}

= lim
r→∞

D
(r)
k1

= 0,

and this proves our claim.
Step 4. For each k ∈ S,

lim
α,β→∞

p
(

x
(α)
k , x

(β)
k

)

= 0.

Assume that lim
α,β→∞

p
(

x
(α)
k , x

(β)
k

)

9 0 for some k ∈ S. This implies that

lim
α,β→∞

max
k∈S

{

p(x
(α)
k , x

(β)
k )

}

9 0.

So there exists an ε > 0 for which we can find two subsequences {x
(α(r))
k }∞r=0

and {x
(β(r))
k }∞r=0 of {x

(r)
k }∞r=0 such that β(r) is the smallest index satisfying

(3.7) β(r) > α(r) > r, max
k∈S

{

p
(

x
(α(r))
k , x

(β(r))
k

)}

≥ ε.

This means that

(3.8) max
k∈S

{

p
(

x
(α(r))
k , x

(β(r)−1)
k

)}

< ε.
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For each k, (P4) and (3.8) give us
(3.9)

p
(

x
(β(r))
k , x

(α(r))
k

)

≤ p
(

x
(β(r))
k , x

(β(r)−1)
k

)

+ p
(

x
(β(r)−1)
k , x

(α(r))
k

)

− p
(

x
(β(r)−1)
k , x

(β(r)−1)
k

)

≤ p
(

x
(β(r))
k , x

(β(r)−1)
k

)

+ p
(

x
(β(r)−1)
k , x

(α(r))
k

)

< p
(

x
(β(r))
k , x

(β(r)−1)
k

)

+ ε.

Using (3.7) and (3.9), we get

ε ≤ max
k∈S

{

p
(

x
(α(r))
k , x

(β(r))
k

)}

< max
k∈S

{

p
(

x
(β(r))
k , x

(β(r)−1)
k

)}

+ ε.

Letting r → ∞ in the last inequality and using Step 3, we obtain that

(3.10) lim
r→∞

max
k∈S

{

p
(

x
(α(r))
k , x

(β(r))
k

)}

= ε.

Again, for each k, (P4) and (3.8) give us

p
(

x
(β(r)−1)
k , x

(α(r)−1)
k

)

≤ p
(

x
(β(r)−1)
k , x

(α(r))
k

)

+ p
(

x
(α(r))
k , x

(α(r)−1)
k

)

− p
(

x
(α(r))
k , x

(α(r))
k

)

≤ p
(

x
(β(r)−1)
k , x

(α(r))
k

)

+ p
(

x
(α(r))
k , x

(α(r)−1)
k

)

< ε+ p
(

x
(α(r))
k , x

(α(r)−1)
k

)

,

which implies to

(3.11) max
k∈S

{

p
(

x
(β(r)−1)
k , x

(α(r)−1)
k

)}

< max
k∈S

{

p
(

x
(α(r))
k , x

(α(r)−1)
k

)}

+ ε.

From (P4) we have, for each k,

p
(

x
(β(r))
k , x

(α(r))
k

)

≤ p
(

x
(β(r))
k , x

(β(r)−1)
k

)

+ p
(

x
(β(r)−1)
k , x

(α(r)−1)
k

)

+ p
(

x
(α(r)−1)
k , x

(α(r))
k

)

− p
(

x
(β(r)−1)
k , x

(β(r)−1)
k

)

− p
(

x
(α(r)−1)
k , x

(α(r)−1)
k

)

≤ p
(

x
(β(r))
k , x

(β(r)−1)
k

)

+ p
(

x
(β(r)−1)
k , x

(α(r)−1)
k

)

+ p
(

x
(α(r)−1)
k , x

(α(r))
k

)

,

and by (3.7) we get

(3.12)

ε ≤ max
k∈S

{

p
(

x
(β(r))
k , x

(α(r))
k

)}

≤ max
k∈S

{

p
(

x
(β(r))
k , x

(β(r)−1)
k

)}

+max
k∈S

{

p
(

x
(β(r)−1)
k , x

(α(r)−1)
k

)}

+max
k∈S

{

p
(

x
(α(r)−1)
k , x

(α(r))
k

)}

.
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By (3.11) and (3.12) we have

ε−max
k∈S

{

p
(

x
(β(r))
k , x

(β(r)−1)
k

)}

−max
k∈S

{

p
(

x
(α(r)−1)
k , x

(α(r))
k

)}

≤ max
k∈S

{

p
(

x
(β(r)−1)
k , x

(α(r)−1)
k

)}

< max
k∈S

{

p
(

x
(α(r))
k , x

(α(r)−1)
k

)}

+ ε.

Letting r → ∞ in the last inequality, and by Step 3, we obtain that

(3.13) max
k∈S

{

p
(

x
(β(r)−1)
k , x

(α(r)−1)
k

)}

= ε.

Since β(r) > α(r) > r, by Step 1

(x
(α(r)−1)
1 , x

(α(r)−1)
2 , . . . , x(α(r)−1)

n ) ≤I (x
(β(r)−1)
1 , x

(β(r)−1)
2 , . . . , x(β(r)−1)

n ).

Using the contractive condition (v) we can obtain

φ
(

p
(

x
(β(r))
l , x

(α(r))
l

))

= φ
(

p
(

F
(

x(β(r)−1)
ϕl

)

, F
(

x(α(r)−1)
ϕl

)))

≤ φ

(

max
k∈S

{

p
(

x
(β(r)−1)
k , x

(α(r)−1)
k

)}

)

− ψ

(

max
k∈S

{

p
(

x
(β(r)−1)
k , x

(α(r)−1)
k

)}

)

for any l = 1, 2, . . . , n. Thus,
(3.14)

φ

(

max
k∈S

{

p
(

x
(β(r))
k , x

(α(r))
k

)}

)

≤ φ

(

max
k∈S

{

p
(

x
(β(r)−1)
k , x

(α(r)−1)
k

)}

)

− ψ

(

max
k∈S

{

p
(

x
(β(r)−1)
k , x

(α(r)−1)
k

)}

)

.

Finally, letting r → ∞ in (3.14) and using (3.10), (3.13), and the continuity of
φ and ψ, we get

φ(ε) ≤ φ(ε)− ψ(ε)

and, consequently, ψ(ε) = 0. Since ψ is an altering distance function, ε = 0,
and this is a contradiction. This proves our claim.
Step 5. The sequence x(r) converges to x = (x1, x2, . . . , xn) ∈ Xn and

lim
r→∞

p(xk, x
(r)
k ) = p(xk, xk) = 0 for all k ∈ S.

By (1.1), for k ∈ S, we have

(3.15) dp(x
(r1)
k , x

(r2)
k ) ≤ 2p(x

(r1)
k , x

(r2)
k ).

Letting r1, r2 → ∞ in (3.15) and using Step 4, we get that

lim
r1,r2→∞

dp(x
(r1)
k , x

(r2)
k ) = 0.
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It means that {x
(r)
k }, k ∈ S is a Cauchy sequence in the metric space (X, dp).

Since (X, p) is complete, by Lemma 1.2(iii), it is also the case for (X, dp). Then
there exists x = (x1, x2, . . . , xn) such that

(3.16) lim
r→∞

dp(x
(r)
k , xk) = 0, k ∈ S.

On the other hand, we have

dp(x
(r)
k , xk) = 2p(x

(r)
k , xk)− p(x

(r)
k , x

(r)
k )− p(xk, xk).

Letting r → ∞ in the above equation, using (3.16) and Step 4, we get

(3.17) lim
r→∞

p(x
(r)
k , xk) = p(xk, xk), k ∈ S.

From (P2) and (P3) we have p(xk, xk) ≤ p(xk, x
(r)
k ) = p(x

(r)
k , xk) for all r ∈ N.

Taking r → ∞, we have that

(3.18) p(xk, xk) ≤ lim
r→∞

p(x
(r)
k , xk), k ∈ S.

Combining (3.17) and (3.18), we get that

lim
r→∞

p(x
(r)
k , xk) = p(xk, xk) = 0, k ∈ S.

This proves our claim.
Now, we show that x is an (I, J)-fixed point of F with respect to Φ, that is,

(3.19) xk = F (xϕk(1), xϕk(2), . . . , xϕk(n)) = F (xϕk
), k ∈ S.

By (P1) and Step 5, to see this, it suffices to show that

p(F (xϕk
), F (xϕk

)) = p(F (xϕk
), xk) = 0, k ∈ S.

Since xϕk
= (xϕk(1), xϕk(2), . . . , xϕk(n)) is greater than or equal to itself with

respect to ≤I ,

φ(p(F (xϕk
), F (xϕk

))) ≤ φ(max
l∈S

{p(xϕk(l), xϕk(l))})− ψ(max
l∈S

{p(xϕk(l), xϕk(l))}).

From Step 5, the right-hand side of the above inequality is zero, and so we
obtain φ(p(F (xϕk

), F (xϕk
))) = 0, and thus,

(3.20) p(F (xϕk
), F (xϕk

)) = 0.

Since x
(r)
k → xk for all k ∈ S as r → ∞ in (X, p) and (i) F is continuous,

we get F (x
(r)
ϕk

) → F (xϕk
) as r → ∞ in (X, p). Then, by (3.20) we get

(3.21)

lim
r→∞

p(F (xϕk
), x

(r+1)
k ) = lim

r→∞

p(F (xϕk
), F (x(r)

ϕk
)) = p(F (xϕk

), F (xϕk
)) = 0.

On the other hand,

p(F (xϕk
), xk) ≤ p(F (xϕk

), x
(r+1)
k ) + p(x

(r+1)
k , xk)− p(x

(r+1)
k , x

(r+1)
k )

≤ p(F (xϕk
), x

(r+1)
k ) + p(x

(r+1)
k , xk).
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Letting r → ∞ in the above inequality, and using Step 5 and (3.21), we get
that

p(F (xϕk
), xk) = 0.

This completes our proof. �

The previous result is still valid for F not necessarily continuous. Instead, we
require that the underlying partial metric space X has an additional property.
We discuss this in the following theorem.

Theorem 3.2. If in Theorem 3.1 we replace the continuity of F by

(i) if {xn} is a nondecreasing sequence and there is x ∈ X such that

lim
n→∞

p(xn, x) = p(x, x) = 0, then xn ≤ x for all n,

(ii) if {xn} is a nonincreasing sequence and there is x ∈ X such that

lim
n→∞

p(xn, x) = p(x, x) = 0, then xn ≥ x for all n,

then F has an (I, J)-fixed point x = (x1, x2, . . . , xn) of F with respect to Φ.

Proof. From Step 5 and (3.20) in the proof of Theorem 3.1, we have that

p(xk, xk) = p(F (xϕk
), F (xϕk

)) = 0, k ∈ S.

Assume that the sequence {x(r)} in Xn satisfies the following: for i ∈ I and
j ∈ J,

{x
(r)
i }∞r=0 is nondecreasing and lim

r→∞

p(x
(r)
i , xi) = p(xi, xi) = 0;

{x
(r)
j }∞r=0 is nonincreasing and lim

r→∞

p(x
(r)
j , xj) = p(xj , xj) = 0.

To see that x = (x1, x2, . . . , xn) is an (I, J)-fixed point of F with respect to
Φ, by (P1) it remains to show that x = (x1, x2, . . . , xn) satisfies that

p(xk, F (xϕk
)) = 0, k ∈ S.

By our assumption, x
(r)
i ≤ xi and x

(r)
j ≥ xj for every r ∈ N, and thus, x(r) ≤I

x. Applying the contractive condition of altering distance functions φ and ψ,
we have

φ
(

p
(

F (x) , F
(

x(r)
)))

≤ φ

(

max
k∈S

{

p
(

xk, x
(r)
k

)}

)

−ψ

(

max
k∈S

{

p
(

xk, x
(r)
k

)}

)

≤ φ

(

max
k∈S

{

p
(

xk, x
(r)
k

)}

)

.

Since φ is nondecreasing, we obtain

(3.22) p
(

F (x) , F
(

x(r)
))

≤ max
k∈S

{

p
(

xk, x
(r)
k

)}

.

On the other hand, for any k ∈ S, by (P4) and (3.22) we get

p (xk, F (xϕk
)) ≤ p

(

xk, x
(r+1)
k

)

+ p
(

x
(r+1)
k , F (xϕk

)
)

− p
(

x
(r+1)
k , x

(r+1)
k

)

≤ p
(

xk, x
(r+1)
k

)

+ p
(

x
(r+1)
k , F (xϕk

)
)
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= p
(

xk, x
(r+1)
k

)

+ p
(

F
(

x(r)
ϕk

)

, F (xϕk
)
)

≤ p
(

xk, x
(r+1)
k

)

+max
l∈S

{

p
(

x
(r)
ϕk(l)

, xϕk(l)

)}

.

Since lim
r→∞

p(x
(r)
k , xk) = p(xk, xk) = 0 for all k ∈ S, taking r → ∞ in the last

inequality implies

p (xk, F (xϕk
)) = 0.

This completes the proof. �

4. Uniqueness of (I, J)-fixed point with respect to Φ

In this section, we consider some additional conditions to ensure the unique-
ness of the (I, J)-fixed point and appropriate conditions to ensure that for the
(I, J)-fixed point x = (x1, x2, . . . , xn) we have x1 = x2 = · · · = xn.

Theorem 4.1. Adding the following hypothesis to the hypotheses of Theorem

3.1 (resp. Theorem 3.2) :

(H) For all x,y ∈ Xn, there exists z ∈ Xn that is comparable to x and y
with respect to the partial order ≤I ,

then we obtain the uniqueness of the (I, J)-fixed point of F with respect to Φ.

Proof. By Theorem 3.1 (resp. Theorem 3.2), the set of (I, J)-fixed points of
F is nonempty. Suppose that x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in
Xn are (I, J)-fixed points of F with respect Φ = (ϕ1, ϕ2, . . . , ϕn), that is, for
k ∈ S

xk = F (xϕk
) and yk = F (yϕk

),

where xϕk
= (xϕk(1), xϕk(2), . . . , xϕk(n)) and yϕk

= (yϕk(1), yϕk(2), . . . , yϕk(n)),

respectively. Again, by Theorem 3.1 (resp. Theorem 3.2), we get

(4.1) p(xk, xk) = p(yk, yk) = 0, k ∈ S.

By assumption, there exists z = (z1, z2, . . . , zn) in X
n that is comparable to

x and y with respect to ≤I . We define the sequence {z(r)} as follows

z(0) = z, z(r) =
(

z
(r)
1 , z

(r)
2 , . . . , z(r)n

)

,

where z
(r+1)
k = F

(

z
(r)
ϕk

)

and z
(r)
ϕk

=
(

z
(r)
ϕk(1)

, z
(r)
ϕk(2)

, . . . , z
(r)
ϕk(n)

)

for k ∈ S.

Since z is comparable with x with respect to ≤I , we may assume that z ≤I x.
Using the mathematical induction, it is easy to show that z(r) ≤I x for all

r ∈ N, and z
(r)
ϕk and xϕk

are comparable for all k ∈ S. Applying the contractive
condition of altering distance functions φ and ψ we have

φ
(

p
(

xk, z
(r+1)
k

))

= φ
(

p
(

F (xϕk
) , F

(

z(r)ϕk

)))



MULTIVARIATE COUPLED FIXED POINT THEOREMS 1201

≤ φ

(

max
l∈S

{

p
(

xϕk(l), z
(r)
ϕk(l)

)}

)

− ψ

(

max
l∈S

{

p
(

xϕk(l), z
(r)
ϕk(l)

)}

)

≤ φ

(

max
l∈S

{

p
(

xϕk(l), z
(r)
ϕk(l)

)}

)

.

By the last equation and using the fact that φ is nondecreasing, we obtain

(4.2)

φ

(

max
k∈S

{

p
(

xk, z
(r+1)
k

)}

)

= max
k∈S

{

φ
(

p
(

xk, z
(r+1)
k

))}

≤ φ

(

max
l∈S

{

p
(

xϕk(l), z
(r)
ϕk(l)

)}

)

− ψ

(

max
l∈S

{

p
(

xϕk(l), z
(r)
ϕk(l)

)}

)

≤ φ

(

max
l∈S

{

p
(

xϕk(l), z
(r)
ϕk(l)

)}

)

.

In fact, since ϕk(S) ⊂ S, (4.2) implies
(4.3)

max
k∈S

{

p
(

xk, z
(r+1)
k

)}

≤ max
l∈S

{

p
(

xϕk(l), z
(r)
ϕk(l)

)}

≤ max
k∈S

{

p
(

xk, z
(r)
k

)}

.

Consequently, the sequence

(

max
k∈S

{

p
(

xk, z
(r)
k

)}

)

is decreasing and nonnega-

tive, and so, for certain α ≥ 0

(4.4) lim
r→∞

max
k∈S

{

p
(

xk, z
(r)
k

)}

= α.

Letting r → ∞ in (4.2) with continuity of φ and using (4.3) and (4.4) we
have

φ(α) ≤ lim
r→∞

[

φ

(

max
l∈S

{

p
(

xϕk(l), z
(r)
ϕk(l)

)}

)

− ψ

(

max
l∈S

{

p
(

xϕk(l), z
(r)
ϕk(l)

)}

)]

≤ lim
r→∞

φ

(

max
l∈S

{

p
(

xϕk(l), z
(r)
ϕk(l)

)}

)

≤ φ(α).

The squeeze theorem gives us

φ(α) = lim
r→∞

φ

(

max
l∈S

{

p
(

xϕk(l), z
(r)
ϕk(l)

)}

)

= lim
r→∞

φ

(

max
l∈S

{

p
(

xϕk(l), z
(r)
ϕk(l)

)}

)

− lim
r→∞

ψ

(

max
l∈S

{

p
(

xϕk(l), z
(r)
ϕk(l)

)}

)

,

and this implies

lim
r→∞

max
l∈S

{

p
(

xϕk(l), z
(r)
ϕk(l)

)}

= 0.

From the condition (iii) in Theorem 3.1, we have

(4.5) lim
r→∞

p
(

xk, z
(r)
k

)

= 0 for all k ∈ S.
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Using a similar argument for y = (y1, . . . , yn), we can obtain

(4.6) lim
r→∞

p
(

yk, z
(r)
k

)

= 0 for all k ∈ S.

From (P4)

p(xk, yk) ≤ p
(

xk, z
(r)
k

)

+ p
(

z
(r)
k , yk

)

− p
(

z
(r)
k , z

(r)
k

)

≤ p
(

xk, z
(r)
k

)

+ p
(

z
(r)
k , yk

)

.

Letting r → ∞, (4.5) and (4.6) yield p(xk, yk) = 0. Combining (4.1) and (P1),
we have xk = yk for all k ∈ S, and hence,

x = y. �

Theorem 4.2. In addition to the hypotheses of Theorem 3.1 (resp. Theorem

3.2), suppose that for any i ∈ I and j ∈ J

x
(0)
i ≤ x

(0)
j .

Then there exists a fixed point x ∈ X of order n of F , that is, F (x, . . . , x) = x.

Proof. Theorem 3.1 (resp. Theorem 3.2) ensures that there exists an (I, J)-
fixed point x = (x1, x2, . . . , xn) of F with respect to Φ, that is,

xk = F (xϕk(1), . . . , xϕk(n)) for all k ∈ S.

It is enough to show that x1 = x2 = · · · = xn. We will prove it by several
steps.
Step 1. xi ≤ xj for any i ∈ I and j ∈ J.

We will show that x
(r)
i ≤ x

(r)
j for all i ∈ I, j ∈ J and r ∈ N. Obviously, the

inequality is satisfied for r = 0.

Suppose x
(r)
i ≤ x

(r)
j for any i ∈ I and j ∈ J. Then by (3.1), we have

(4.7) x
(r)
ϕi(k)

≤ x
(r)
ϕj(k)

, k ∈ I and x
(r)
ϕi(k)

≥ x
(r)
ϕj(k)

, k ∈ J.

By (4.7) and the (I, J)-mixed monotone property of F , we obtain

x
(r+1)
i = F

(

x
(r)
ϕi(1)

, . . . , x
(r)
ϕi(n)

)

≤ F
(

x
(r)
ϕj(1)

, . . . , x
(r)
ϕj(n)

)

= x
(r+1)
j .

In the proof of Theorem 3.1 (resp. Theorem 3.2), we have shown that for

each k,
{

x
(r)
k

}

is a Cauchy sequence in a complete metric space (X, dp) and

converges to xk. Hence, we obtain

(4.8) xi ≤ xj for any i ∈ I, j ∈ J.

This proves our claim.
Step 2. xs = xt for any s, t ∈ S.

In the proof of Theorem 3.1, we have shown that p(xk, xk) = 0 for all k ∈ S.

By (P1), to see this claim, it suffices to show that p(xs, xt) = 0 for any s, t ∈ S.
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Assume that s ∈ I and t ∈ J . Suppose that for some s1 ∈ I and t1 ∈ J

p(xs1 , xt1) > 0.

Note from Step 1 that xϕs1
(k) ≤ xϕt1

(k) for k ∈ I and xϕs1
(k) ≥ xϕt1

(k) for

k ∈ J . By the contractive condition (v), we get

0 < φ(p(xs1 , xt1))

= φ
(

p
(

F
(

xϕs1
(1), . . . , xϕs1

(n)

)

, F
(

xϕt1
(1), . . . , xϕt1

(n)

)))

≤ φ

(

max
k∈S

{

p
(

xϕs1
(k), xϕt1

(k)

)}

)

− ψ

(

max
k∈S

{

p
(

xϕs1
(k), xϕt1

(k)

)}

)

≤ φ

(

max
k∈S

{

p
(

xϕs1
(k), xϕt1

(k)

)}

)

.

Since φ is the altering distance function, we have

max
k∈S

{

p
(

xϕs1
(k), xϕt1

(k)

)}

> 0.

We take s2 ∈ I and t2 ∈ J such that d(xs2 , xt2) = max
k∈S

{

p
(

xϕs1
(k), xϕt1

(k)

)}

>

0. Continuing in this way, we construct a sequence of pairs {(sm, tm)}m in I×J
such that for any m ∈ N

p(xsm , xtm) > 0 and p(xsm+1
, xtm+1

) = max
k∈S

{p(xϕsm(k), xϕtm (k))}.

Then we have for all m ∈ N

(4.9) φ (p(xsm , xtm)) >

m
∑

r=2

ψ (p(xsr , xtr )) .

Indeed,

0 < φ(p(xs1 , xt1))

≤ φ (p(xs2 , xt2))− ψ (p(xs2 , xt2))

≤ φ (p(xs3 , xt3))− ψ (p(xs3 , xt3))− ψ (p(xs2 , xt2))

. . .

≤ φ (p(xsm , xtm))−
m
∑

r=2

ψ (p(xsr , xtr )) .

Let D = {(s, t) ∈ I × J : p(xs, xt) > 0}. Then D is nonempty, because it
contains the sequence {(sm, tm)}m defined above. Since D ⊂ I × J has finite
elements, we can take the minimum of the images of ψ ◦ p over D such as

µ := min{ψ(p(xs, xt)) : (s, t) ∈ D} > 0.

We choose N ∈ N such that

N ≥

max
s∈I,t∈J

{φ(p(xs, xt))}

µ
+ 1.
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Then we have

φ(p(xsN , xtN )) ≤ max
s∈I,t∈J

φ(p(xs, xt)) ≤ (N − 1)µ ≤
N
∑

r=2

ψ (p(xsr , xtr)) .

This is a contradiction to (4.9). So for any s ∈ I and t ∈ J

(4.10) xs = xt.

Now, suppose that s1, s2 ∈ I (resp., s1, s2 ∈ J). Then by (4.10), for some
t ∈ J (resp., t ∈ I) we have

xs1 = xt and xs2 = xt.

Thus, xs1 = xs2 for s1, s2 ∈ I (resp., s1, s2 ∈ J).
This completes the proof. �

Example 4.3. Let X = [0,∞) and p(x, y) = max{x, y}. Define ϕi : {1, 2, 3} →
{1, 2, 3}, i = 1, 2, 3 by

ϕ1(1) = 1, ϕ1(2) = 2, ϕ1(3) = 3,
ϕ2(1) = 2, ϕ2(2) = 1, ϕ2(3) = 3,
ϕ3(1) = 3, ϕ3(2) = 3, ϕ3(3) = 1,

and defined F : X ×X ×X → X by

F (x1, x2, x3) =

{

x1+x2−x3

3 , if x1 + x2 ≥ x3
0, if x1 + x2 < x3.

Then (X, p) is a partial metric space and the following conditions hold:

(i) F is continuous;
(ii) F has the (I, J)-mixed monotone property where I = {1, 2} and J =

{3};
(iii) for each k ∈ S := {1, 2, 3}, there exists (p, q) ∈ S × S such that

k = ϕp(q);

(iv) there exists x(0) =
(

x
(0)
1 , x

(0)
2 , x

(0)
3

)

∈ X3 such that

x
(0)
i ≤ F (x

(0)
ϕi(1)

, x
(0)
ϕi(2)

, x
(0)
ϕi(3)

), i ∈ I = {1, 2},

x
(0)
j ≥ F (x

(0)
ϕj(1)

, x
(0)
ϕj(2)

, x
(0)
ϕj(3)

), j ∈ J = {3};

(v) there exist two altering distance functions φ and ψ such that

φ(p(F (x), F (y))) ≤ φ

(

max
k∈S

{p(xk, yk)}

)

− ψ

(

max
k∈S

{p(xk, yk)}

)

for all x = (x1, x2, x3) ≤I y = (y1, y2, y3).

Thus by Theorem 3.1, F has an (I, J)-coupled fixed point with respect to
Φ = (ϕ1, ϕ2, ϕ3). Moreover, (0, 0, 0) is the unique (I, J)-coupled fixed point of
F .
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Proof. The proofs of (i)-(iii) are clear.
The conditions (iv) is satisfied for x(0) = (0, 0, 1). Indeed,

x
(0)
1 = 0 = F (0, 0, 1) = F

(

x
(0)
ϕ1(1)

, x
(0)
ϕ1(2)

, x
(0)
ϕ1(3)

)

,

x
(0)
2 = 0 = F (0, 0, 1) = F

(

x
(0)
ϕ2(1)

, x
(0)
ϕ2(2)

, x
(0)
ϕ2(3)

)

,

x
(0)
3 = 1 ≥ 1

3 = F (1, 1, 0) = F
(

x
(0)
ϕ3(1)

, x
(0)
ϕ3(2)

, x
(0)
ϕ3(3)

)

.

From the definition of the function F , we have

F (x1, x2, x3) ≤ max

{

x1 + x2 − x3

3
, 0

}

,

F (y1, y2, y3) ≤ max

{

y1 + y2 − y3

3
, 0

}

and

p(F (x1, x2, x3), F (y1, y2, y3))

≤ max

{

max{
x1 + x2 − x3

3
, 0},max{

y1 + y2 − y3

3
, 0}

}

= max

{

x1 + x2 − x3

3
,
y1 + y2 − y3

3
, 0

}

≤ max

{

x1 + x2

3
,
y1 + y2

3

}

≤ max

{

2

3
max{x1, x2, x3},

2

3
max{y1, y2, y3}

}

=
2

3
max{x1, x2, x3, y1, y2, y3}

=
2

3
max {max{x1, y1},max{x2, y2},max{x3, y3}}

=
2

3
max {p(x1, y1), p(x2, y2), p(x3, y3)} .

Therefore, the condition (v) is satisfied for the altering distance functions
φ = I and ψ = 1

3I (where I is an identity mapping). Since X = [0,∞) is a
totally ordered set, by Theorem 4.1, (0, 0, 0) is the unique coupled fixed point
of F . �
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metric G-metric spaces, J. Ineq. Appl. 2013 (2013), 528; doi:10.1186/1029-242X-2013-
528.

[4] V. Berinde and M. Borcut, Tripled fixed point theorems for contractive type mappings

in partially ordered metric spaces, Nonlinear Anal. 74 (2011), no. 15, 4889–4897.
[5] M. Berzig and B. Samet, An extension of coupled fixed point’s concept in higher dimen-

sion and applications, Comput. Math. Appl. 63 (2012), no. 8, 1319–1334.
[6] T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric

spaces and applications, Nonlinear Anal. 65 (2006), no. 7, 1379–1393.
[7] W.-S. Du, Coupled fixed point theorems for nonlinear contractions satisfied Mizoguchi-

Takahashi’s condition in quasiordered metric spaces, Fixed Point Theory Appl. 2010
(2010), Art. ID 876372, 9 pp.
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