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COINCIDENCE THEOREMS FOR COMPARABLE

GENERALIZED NON LINEAR CONTRACTIONS IN

ORDERED PARTIAL METRIC SPACES

Ramesh Chandra Dimri and Gopi Prasad

Abstract. In this paper, we prove some coincidence point theorems in-
volving ϕ-contraction in ordered partial metric spaces. We also extend
newly introduced notion of g-comparability of a pair of maps for linear
contraction in ordered metric spaces to non-linear contraction in ordered
partial metric spaces. Thus, our results extend, modify and generalize
some recent well known coincidence point theorems of ordered metric
spaces.

1. Introduction

The Banach contraction mapping theorem, is the limelight result for find-
ing the existence and uniqueness of fixed points of certain mappings, in the
framework of metric spaces. Matthews [16] extended the Banach contraction
mapping theorem to the partial matric spaces for applications in program ver-
ification. Subsequently several authors (see for instance, [7, 9, 21, 24, 32])
obtained many useful fixed point results in this direction. The existence of
several connection between partial metrics and topological aspects of domain
theory has been pointed by many authors see [9, 10, 15, 16, 25, 26, 27].

On the other hand fixed point theorem for monotone mapping was initiated
by Turinci [28, 29] in 1986. Later Ran and Reuring [32] proved slightly more
natural version of this corresponding fixed point theorem of Turinci for contin-
uous monotone mappings with some application to matrix equations. In this
continuation, Nieto and Rodriguez-Lopez [18, 19] generalized the theorem for
increasing mappings and analogously proved a fixed point theorem for decreas-
ing mapping in ordered metric setting which has been generalized by many
authors [1, 6, 5, 11, 20, 22, 30, 31] in the recent years.

Most recently, Alam et al. [3, 4] extended the foregoing results to general-
ized nonlinear ϕ-contractions in ordered metric setting. Also, in light of the
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g-monotonicity condition of a pair of maps, Alam et al. [2] introduced the no-
tion of g-comparability, and proved the existence and uniqueness results on
coincidence points for linear contraction in partially ordered metric spaces.

Our aim in this paper is to utilise the notion of g-comparability of a pair of
maps for non-linear contraction and generalize the recent coincidence theorems
in ordered metric spaces to ordered partial metric spaces.

2. Preliminaries

Definition 2.1. A partial metric on a set X is a function p : X × X → R
+

such that for all x, y, z ∈ X :
(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(p2) p(x, x) ≤ p(x, y),
(p3) p(x, y) = p(y, x),
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

Note that the self-distance of any point need not be zero, hence the idea of
generalizing metrics so that a metric on a non-empty set X is precisely metric
p on X such that for any x ∈ X , p(x, x) = 0.

Similar to the case of metric space, a partial metric space is a pair (X, p)
consisting of a non-empty set X and a partial metric p on X .

Example 2.1. Let a function p : R+ → R
+ be defined by p(x, y) = max{x, y}

for any x, y ∈ R+. Then, (R+, p) is a partial metric space where the self-distance
for any point x ∈ R

+ is its value itself.

Example 2.2. If X := {[a, b] : a, b ∈ R, a ≤ b}, then p : X ×X → R
+ defined

by p([a, b], [c, d]) = max{b, d} −min{a, c} defines a partial metric on X.
Each partial metric p on X generates a T0 topology Tp on X , which has as

a base the family of open p-balls Bp(x, ǫ), x ∈ X, ǫ > 0, where

Bp(x, ǫ) = {y ∈ X : p(x, y) < p(x, x) + ǫ}

for all x ∈ X and ǫ > 0.

If p is a partial metric on X , then the function ps : X ∗X → R
+ defined by

ps(x, y) = 2p(x, y)− p(x, x) − p(y, y)

is a metric on X .

Definition 2.2. Let (X, p) be a partial metric space and {xn} be a sequence
in X . Then

(a) {xn} converges to a point x ∈ X if and only if p(x, x) = lim
n→∞

p(x, xn),

(b) {xn} is a Cauchy sequence if there exists (and is finite) lim
n,m→∞

p(xn, xm).

Definition 2.3. A partial metric space (X, p) is said to be complete if every
Cauchy sequence {xn} in X converges with respect to Tp to a point x ∈ X
such that p(x, x) = limn,m→∞ p(xn, xm).
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Remark 2.1. It is easy to see that every closed subset of a complete partial
metric space is complete.

Lemma 2.1 ([15, 21]). Let (X, p) be a partial metric space. Then

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence

in the metric space (X, ps),
(b) (X, p) is complete if and only if the metric space (X, ps) is complete.

Furthermore, limn→∞ ps(xn, x) = 0 if and only if

p(x, x) = lim
n→∞

ps(xn, x) = lim
n,m→∞

p(xn, xm).

Definition 2.4. A triplet (X, p,�) is called an ordered partial metric space if
(X, p) is a partial metric space and (X,�) is an ordered set.

Definition 2.5 ([11]). Let (X,�) be an ordered set and (f, g) a pair of self
mappings on X . We say that

(a) f is g-increasing if for any x, y ∈ X

g(x) � g(y) ⇒ f(x) � f(y),

(b) f is g-decreasing if for any x, y ∈ X

g(x) � g(y) ⇒ f(x) � f(y),

(c) f is g -monotone if f is either g-increasing or g-decreasing.

Proposition 2.1. Let f and g be a pair of self-mappings defined on an ordered

set (X,�). If f is g-monotone and g(x) = g(y), then f(x) = f(y).

Proof. As g(x) = g(y), on using reflexivity of �, we have g(x) � g(y) and
g(x) � g(y). Suppose that f is g-increasing (resp. g-decreasing), we have
f(x) � f(y) and f(x) � f(y) (resp. f(x) � f(y) and f(x) � f(y)), which, in
both cases (owing to the antisymmetric property of �) gives rise to f(x) =
f(y). �

Definition 2.6 ([13]). LetX be a non-empty set and f and g two self-mappings
on X . Then

(a) an element x ∈ X is called a coincidence point of f and g if

g(x) = f(x),

(b) if x ∈ X is a coincidence point of f and g and u ∈ X such that u =
g(x) = f(x), then u is called a point of coincidence of f and g,

(c) if x ∈ X is a coincidence point of f and g such that u = g(x) = f(x),
then u is called a common fixed point of f and g.

Definition 2.7. Let (X, p,�) be an ordered partial metric space and f a self-
mapping on X . We say that

(i) (X, p,�) has the f -ICU (increasing-convergence-upper bound) property
if f -image of every increasing convergent sequence {xn} in X is bounded above
by f -image of its limit (as an upper bound), i.e.,

xn ↑ x ⇒ f(xn) � f(x), ∀n ∈ N ∪ {0},
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(ii) (X, p,�) has the f -DCL (decreasing-convergence-lower bound) property
if f -image of every decreasing convergent sequence {xn} in X is bounded below
by f -image of its limit (as a lower bound), i.e.,

xn ↓ x ⇒ f(xn) � f(x), ∀n ∈ N ∪ {0},

(iii) (X, p,�) has the f -MCB (monotone-convergence-bounded) property
if it has the f -ICU property as well as f -DCL property. Notice that under
the restriction f = I, the identity mapping on X , Definition 2.7 reduces to
Definition 12 of Alam et al. [4].

Definition 2.8. Let (X, p,�) be an ordered partial metric space and f a
self-mapping on X . We say that (X, p,�) has the f -TCC property if every
termwise monotone convergent sequence {xn} inX has a subsequence, whose f -
image is termwise bounded by f -image of the limit of {xn} (as a c-bound), i.e.,
xn l x ⇒ ∃ a subsequence {xnk

} of {xn} with f(xnk
) ≺≻ f(x), ∀k ∈ N ∪ {0}.

Notice that under the restriction f = I, the identity mapping on X , Defini-
tion 2.8 reduces to Definition 2.5 of Alam et al. [3].

Definition 2.9 ([2]). Let (X,�) be an ordered set and f and g two self-
mappings on X . We say f is g-comparable (or weakly g-monotone or (g,≺≻)-
preserving) if for any x, y ∈ X,

g(x) ≺≻ g(y) ⇒ f(x) ≺≻ f(y).

Notice that on setting g = I, the identity mapping on X, Definition 2.9
reduces to Definition 3.1 of Alam et al. [2].

Definition 2.10. Let (X, p) be a partial metric space and f and g two self-
mappings on X . Then the pair (f, g) is said to be partial compatible if the
following conditions hold:

(a) p(x, x) = 0 ⇒ p(gx, gx) = 0,
(b) limn→∞ p(fgxn, gfxn) = 0, whenever {xn} is a sequence in X such that

fxn → t and gxn → t for some t ∈ X.

It is clear that Definition 2.7 extend and generalizes the notion of compati-
bility introduced by Jungck [13].

The following family of control functions is essentially due to Boyad and
Wong [8] Ψ = {ϕ : [0,∞) → [0,∞) : ϕ(t) < t for each t > 0 and ϕ is right-
upper semicontinuous}.

Mukherjea [17] introduced the following family of control functions:
Θ = {ϕ : [0,∞) → [0,∞) : ϕ(t) < t for each t > 0 and ϕ is right continuous}.
The following family of control functions found in literature is more natural.

ℑ = {ϕ : [0,∞) → [0,∞) : ϕ(t) < t for each t > 0 and ϕ is continuous}.
The following family of control functions is due to Lakshmikantham and

Ciric [14].
Φ = {ϕ : [0,∞) → [0,∞) : ϕ(t) < t for each t > 0 and limr→ t+ ϕ(t) < t for

each t > 0}.
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The following family of control functions is indicated by Boyd and Wong [8]
but was later used in Jotic [12].

Ω = {ϕ : [0,∞) → [0,∞) : ϕ(t) < t for each t > 0 and lim supr→ t+ ϕ(t) < t
for each t > 0}.

Proposition 2.2 ([4]). The class Ω enlarges the classes Ψ, Θ, ℑ and Φ under

the following inclusion relation:

ℑ ⊂ Θ ⊂ Ψ ⊂ Ω and ℑ ⊂ Θ ⊂ Φ ⊂ Ω.

Lemma 2.2 ([4]). Let ϕ ∈ Ω. If {xn} ⊂ (0,∞) is a sequence such that an+1 ≤
ϕ(an), ∀n ∈ N, then limn→∞ an = 0.

3. Main results

We prove our main result as follows:

Theorem 3.1. Let (X, p,�) be an ordered partial metric space and f , g be

two self mappings on X. Suppose that the following hold:
(a) f(X) ⊆ g(X),
(b) f is g-increasing,
(c) there exists x0 ∈ X such that g(x0) � f(x0),
(d) there exists ϕ ∈ Ω such that

(1) p(fx, fy) � ϕ(p(gx, gy)), ∀x, y ∈ X with g(x) ≺≻ g(y),

(e) (X, p) is complete,

(f) (f, g) is partial compatible pair,

(g) f and g continuous mappings, or alternately

(g′) g is continuous and (X, p,�) has f -ICU property.

Then (f, g) have a coincidence point, that is there exists x ∈ X such that

f(x) = g(x). Moreover, we have p(x, x) = p(fx, fx) = p(gx, gx) = 0.

Proof. According to assumption (d) the contractivity condition p(fx, fy) ≤
ϕ(p(gx, gy)) holds for any x, y ∈ X under two possibilities:

either g(x) � g(y) or g(x) � g(y).

If it is satisfied for first possibility, then by the symmetry of partial metric
space it must be satisfied for second possibility and vice-versa. Therefore on
applying the given contractivity condition these two possibilities are same and
hence we use only first to prove our result.

In light of assumption (c) if g(x0) = f(x0), then x0 is coincidence point
of f and g and hence the proof. Otherwise if g(x0) 6= f(x0), then we have
g(x0) ≺ f(x0).

So in light of assumption (a) (i.e., f(X) ⊆ g(X)). We can choose {x1} such
that g(x1) = f(x0). Again from f(X) ⊆ g(X) we can choose x2 ∈ X such that
g(x2) = f(x1). Continuing this process, we can define a sequence {xn} ⊂ X
such that

(2) g(xn+1) = f(xn), ∀n ≥ 0.
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Now, we claim that gxn is an increasing sequence, i.e.,

(3) g(xn) � g(xn+1), ∀n ≥ 0.

We prove this assertion by mathematical induction. On using (2) with n = 0
and in light of (c), we have g(x0) � f(x0) = g(x1). Thus (3) holds for n = 0.
Suppose that (3) holds for n = r > 0, i.e.,

(4) g(xr) � g(xr+1)

then we have to show that (3) holds for n = r + 1. To verify this we use (2),
(4) and in light of assumption (b), we have

g(xr+1) = f(xr) � f(xr+1) = g(xr+2).

Thus, by induction (3) holds for all n ≥ 0. Suppose that there exists n ∈ N such
that p(fxn, fxn+1) = 0 which implies that fxn = fxn+1, i.e., gxn+1 = fxn+1,
then xn+1 is a coincidence point of f and g, so we are through. On the other
hand we can assume that fxn 6= fxn+1, ∀n ∈ N ∪ {0}, i.e.,

(5) p(fxn, fxn+1) > 0, ∀n ≥ 0.

We will show that

(6) p(fxn, fxn+1) ≤ ϕ(p(fxn−1, fxn)), ∀n ∈ N,

using (3) and in light of the assumption (d) with x = xn, y = xn+1 we get

p(fxn, fxn+1) ≤ ϕ(p(gxn, gxn+1)) = ϕ(p(fxn−1, fxn)).

Since ϕ is nondecreasing repeating n-times, we get

(7) p(fxn, fxn+1) ≤ ϕn(p(fx0, fx1)).

Letting n → ∞, ϕn(t) → 0 for all t > 0, we obtain

(8) lim
n→∞

p(fxn, fxn+1) = 0.

On the other hand, we have

ps(fxn, fxn+1) = 2p(fxn, fxn+1)− p(fxn, fxn)− p(fxn+1, fxn+1)

≤ 2p(fxn, fxn+1).

Letting n → ∞ in this inequality, using (8), we get

(9) lim
n→∞

ps(fxn, fxn+1) = 0.

Next, we shall show that {fxn} is a Cauchy sequence in the metric space
(X, ps). On contrary suppose that {fxn} is not a Cauchy sequence in (X, ps).
Then there exists ǫ > 0 such that for each positive integer k, there exists two
subsequences {xnk

} and {xmk
} of {xn} such that nk > mk > k, and

(10) ps(fxmk
, fxnk

) ≥ ǫ.
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Since ps(x, y) ≤ 2p(x, y) for all x, y ∈ X, from (10) for all k ≥ 0, we have
nk > mk > k and ps(fxmk

, fxnk
) ≥ ǫ/2. Without loss of generality, we can

assume that

(11) nk > mk > k, p(fxmk
, fxnk

) ≥ ǫ/2, p(fxmk
, fxnk−1) < ǫ/2.

From(11) and triangular inequality of partial metric space, we have

ǫ/2 ≤ p(fxmk
, fxnk

)

≤ p(fxmk
, fxnk+1) + p(fxnk+1, fxnk

)− p(fxnk+1, fxnk+1)

< ǫ/2 + p(fxnk+1, fxnk
).

Letting k → ∞ and using (8), we get

(12) lim
k→∞

p(fxmk
, fxnk

) = ǫ/2.

Again using triangular inequality and in light of our contrary supposition that
{fxn} is not Cauchy, we obtain the following sequences tend to ǫ/2 when
k → ∞.

(13)
lim
k→∞

p(fxmk+1, fxnk
) = lim

k→∞
p(fxmk

, fxnk+1)

= lim
k→∞

p(fxmk+1, fxnk+1) = ǫ/2.

On the other hand, we have

p(fxnk
, fxmk

) ≤ p(fxnk
, fxnk+1) + p(fxnk+1, fxmk

)− p(fxnk+1, fxnk+1).

Owing to assumption (d), p(fxnk+1, fxmk
) ≤ ϕ(p(fxnk

, fxmk−1)), we have

p(fxmk
, fxnk

≤ p(fxnk
, fxnk+1) + ϕ(p(fxnk

, fxmk−1))− p(fxnk+1, fxmk+1).

Letting k → ∞, using (12), (13) and continuity of ϕ, we have

ǫ/2 ≤ ϕ(ǫ/2) < ǫ/2,

a contraction.
Thus our supposition that {fxn} is not Cauchy sequence was wrong. There-

fore {fxn} is a Cauchy sequence in the metric space (X, ps) and

(14) lim
m,n→∞

ps(fxn, fxm) = 0.

Now, since (X, p) is complete, from Lemma 2.1, (X, ps) is a complete metric
space. Therefore, the sequence {fxn} converges to some x ∈ X , that is

lim
n→∞

ps(fxn, x) = lim
n→∞

ps(gxn+1, x) = 0.

In light of property (b) of Lemma 2.1, we have

(15) p(x, x) = lim
n→∞

p(fxn, x) = lim
n→∞

p(gxn+1, x) = lim
n,m→∞

p(fxn, fxm).

On the other hand, from property (p2) of a partial metric space, we have

p(fxn, fxn) ≤ p(fxn, fxn+1), ∀n ∈ N.
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Letting n → ∞ in the above inequality and using (7), we have

lim
n→∞

p(fxn, fxn) = 0.

Therefore, from the definition of ps and using (14), we get

lim
m,n→∞

p(fxn, fxm) = 0.

Thus, from (15), we have

(16) p(x, x) = lim
n→∞

p(fxn, x) = lim
m,n→∞

p(fxn, fxm) = 0.

Now, since f is continuous, and using (16), we have

(17) lim
n→∞

p(f(fxn), fx)) = p(fx, fx), ∀n ∈ N.

Using the triangular inequality, we have

(18)

p(fx, gx) ≤ p(fx, ffxn) + p(ffxn, gfxn+1) + p(gfxn+1, gx)

− p(ffxn, ffxn)− p(gfxn+1, gfxn+1)

= p(fx, ffxn) + p(fgxn+1, gfxn+1) + p(gfxn+1, gx)

− p(ffxn, ffxn)− p(gfxn+1, gfxn+1).

Now, letting n → ∞ in (18) and using (16), (17), assumption f , and continuity
of g, we have

p(fx, gx) ≤ p(fx, fx) + 0 + p(gx, gx)− p(fx, fx)− p(gx, gx) = 0.

Also, we know that p(fx, gx) ≥ 0. So we conclude that p(fx, gx) = 0, i.e.,
fx = gx. Thus x ∈ X is a coincidence point of f and g.

Alternately, suppose that g is continuous and (X, p,�) has f -ICU property,
On account of (3) and (16), we have fxn ↑ x which gives rise

(19) g(fxn+1) � gx, ∀n ≥ 0.

Using (19) and assumption (d), we have p(ffxn+1, fx) ≤ ϕ(p(gfxn+1, gx)),
∀n ≥ 0. Now we claim that

(20) p(ffxn+1, fx) ≤ p(gfxn+1, gx), ∀n ∈ N.

In order to verify this, two different possibilities arising here. We resolve them
by partitioning N such that N = N0 ∪N+ and N0 ∩N+ = φ verifying that,

(c1) p(gfxn+1, gx) = 0, ∀n ∈ N0,
(c2) p(gfxn+1, gx) > 0, ∀n ∈ N+.

In case (c1), p(gfxn+1, gx) = 0, i.e., g(fxn+1) = gx, using Proposition 2.1, we
have f(fxn+1) = fx. Thus (20) holds for all n ∈ N0. In case (c2), owing to def-
inition of Ω we have p(ffxn+1, fx) ≤ ϕ(p(gfxn+1, gx)) < p(gfxn+1, gx), ∀n ∈
N+. Finally (20) holds for all n ∈ N.

Also from property (p2) of partial metric spaces

p(fgxn+1, fgxn+1) ≤ p(gfxn+1, fgxn+1), ∀n ∈ N.
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Letting n → ∞, in light of the assumption (f) we have

(21) lim
n→∞

p(fgxn+1, fgxn+1) = 0, ∀n ∈ N.

On using triangular inequality, (16), (19), (20) and (21), we have

p(fx, gx) ≤ p(fx, ffxn) + p(ffxn, gfxn+1) + p(gfxn+1, gx)

− p(ffxn, ffxn)− p(gfxn+1, gfxn+1)

= p(fx, ffxn) + p(fgxn+1, gfxn+1) + p(gfxn+1, gx)

− p(fgxn+1, fgxn+1)− p(gfxn+1, gfxn+1)

= 2p(gfxn+1, gx) + p(fgxn+1, gfxn+1)

− p(fgxn+1, fgxn+1)− p(gfxn+1, gfxn+1).

Letting n → ∞, we have p(fx, gx) ≤ 2p(gx, gx) + 0− p(gx, gx) = 0.
So we have fx = gx. Thus x ∈ X is a coincidence point of f and g. This

completes the proof. �

Corollary 3.1. Theorem 3.1 remains true if we replace condition (c) and (g′)
by the conditions (c′) and (g′′) respectively (besides retaining the rest of the

assumptions):
(c′) there exists x0 ∈ X such that g(x0) � f(x0),
(g′′) g is continuous and (X, p,�) has f -DCL property.

Corollary 3.2. Theorem 3.1 and Corollary 3.1 remains true if we replace

condition (c) and (g′) by the conditions (c′′) and (g′′′) respectively (besides
retaining the rest of assumptions):

(c′′) there exists x0 ∈ X such that g(x0) ≺≻ f(x0),
(g′′′) g is continuous and (X, p,�) has f -MCB property.

Theorem 3.2. Let (X, p,�) be an ordered partial metric space and f , g be

two self mappings on X. Suppose that the followings hold:
(a) f(X) ⊆ g(X),
(b) f is g-comparable,

(c) there exists x0 ∈ X such that g(x0) ≺≻ f(x0),
(d) there exists ϕ ∈ Ω such that

p(fx, fy) � ϕ(p(gx, gy)), ∀x, y ∈ X with g(x) ≺≻ g(y),

(e) (X, p) is complete,

(f) (f, g) is partial compatible pair,

(g) f and g are continuous mappings, or alternately

(g′) g is continuous and (X, p,�) has f -TCC property.

Then (f, g) have a coincidence point, that is there exists x ∈ X such that

f(x) = g(x). Moreover, we have p(x, x) = p(fx, fx) = p(gx, gx) = 0.

Proof. The proof of this theorem starts along the lines of the proof of Theorem
3.3 proved in [2] and runs up to the lines where by induction the following hold:

g(xr+1) = f(xr) ≺≻ f(xr+1) = g(xr+2).
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Now following the lines of the proof of our earlier Theorem 3.1 in light of
assumptions (a)-(g) the proof is accomplished.

Again, alternately suppose that g is continuous and (X, p,�) has f -TCC
property. As f(xn) l z, ∃ a subsequence {ynk

} of {fxn} such that

(22) g(ynk
) ≺≻ g(z), ∀k ∈ N ∪ {0}.

Now {fxn} ⊂ f(X) and {ynk
} ⊂ f(xnk

), so ∃{xnk
} ⊂ X such that ynk

=
f(xnk+1), which implies that

(23) g(fxnk+1) ≺≻ g(z), ∀k ∈ N ∪ {0}.

Since fxnk+1 → z, so equations (6)-(19) also hold for {xnk
} instead of {xn}.

On using (20), and proceeding on the lines of the proof of the Theorem 3.1,
this theorem can be proved. �

4. Uniqueness results

Now, we prove results related to uniqueness of a point of coincidence and
coincidence point corresponding to previous results. For a pair f and g of self-
mappings on a non empty set X , we classify the following sets:
C(f, g) = {x ∈ X : gx = fx}, i.e., the set of all coincidence points of f and g,
C̄(f, g) ={x̄ ∈ X : there exists an x ∈ X such that x̄ = gx = fx }, i.e., the set
of all points of coincidence of f and g.

Theorem 4.1. In addition to the hypotheses (a)-(d) along with g’ of Theorem
3.1 (resp. Corollary 3.1, Corollary 3.2 and Theorem 3.2), If the following con-

dition holds:
(u0) for all x, y ∈ X, ∃z ∈ X such that g(x) ≺≻ g(z) and g(y) ≺≻ g(z), then
f and g have a unique point of coincidence.

Proof. The proof of this theorem runs along the lines of proof of Theorem 5 of
[4] and we conclude that

(24) lim
n→∞

p(gx, gzn) = 0, ∀n ≥ 0.

Similarly one can prove that

(25) lim
n→∞

p(gy, gzn) = 0, ∀n ≥ 0.

Also, from property p2 of partial metric space, we have

p(gzn, gzn) ≤ p(gy, gzn).

Letting n → ∞, we obtain

(26) p(gzn, gzn) = 0.

On using triangular inequality, (24), (25), and (26) we obtain

p(x̄, ȳ) = p(gx, gy) ≤ p(gx, gzn) + p(gzn, gy)− p(gzn, gzn) → 0

as n → ∞, this implies that
x̄ = ȳ.
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Thus, f and g have a unique point of coincidence. �

Example 4.1. LetX=[0∞). Then (X, p,�) is an ordered partial metric space
equipped with the natural partial order and partial metric p(x, y) = max{x, y}
for all x, y ∈ X . Define f, g : X → X by f(x) = x, g(x) = 3x and ϕ : [0 ∞)
→ [0 ∞) such that ϕ(t) = 7

9 t then f is g-increasing. Also, for x, y ∈ X with
y ≤ x, we have

p(fx, fy) = x <
7

9
(3x) =

7

9
p(gx, gy) = ϕ(p(gx, gy)),

i.e., f and g satisfy the contractivity condition (d). It is easy to show that
all the other conditions mentioned in Theorem 3.1 are also satisfied. Notice
that if condition (u0) of Theorem 4.1 holds then f and g have unique point of
coincidence.

Remark 4.1. If we suppose X=[− 1
2
1
2 ], f(x) = x4 and g(x) = x2, then f is

g-comparable with TCC property of the ordered partial metric space. Also, in
light of the above example it is easy to show that f and g satisfy the contrac-
tivity condition and all the other conditions mentioned in Theorem 3.2. Notice
that under the assumption (u0) of Theorem 4.1, f and g have unique point of
coincidence.
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