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COMMON FIXED POINT OF MAPS IN COMPLETE

PARTIAL METRIC SPACES

Shaban Sedghi* and Nabiollah Shobkolaei

Abstract. In this paper, we prove some common fixed point results for

some mappings satisfying generalized contractive condition in complete

partial metric space.

1. Introduction

In the last years, the extension of the theory of fixed point to generalized
structures as cone metrics, partial metric spaces and quasi-metric spaces has
received a lot of attention. One of the most interesting is partial metric space.
Partial metric space is a generalized metric space in which each object does
not necessarily have to have a zero distance from itself [10]. A motivation
behind introducing the concept of a partial metric was to obtain appropriate
mathematical models in the theory of computation and, in particular, give
a modified version of the Banach contraction principle, more suitable in this
context [10]. Subsequently, Valero [14], Oltra and Valero [12] and Altun et al
[2] gave some generalizations of the result of Matthews. Romaguera [13] proved
the Caristi type fixed point theorem on this space. The purpose of this paper
is to present a general fixed point theorem for two pairs of mappings on two
partial metric spaces satisfying implicit relations. Our result generalizes the
main result from [7] and [11].

First, we recall some definitions and results needed in the sequel. The reader
interested in fixed point theory in partial metric spaces is referred to the work
of [1, 8, 10, 12, 13, 14] and references therein.

A partial metric on a nonempty set X is a mapping p : X ×X → R+ such
that for all x, y, z ∈ X :

(p1) x = y if and only if p(x, x) = p(x, y) = p(y, y),
(p2) p(x, x) ≤ p(x, y),
(p3) p(x, y) = p(y, x),
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).
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A partial metric space is a pair (X, p) such that X is a nonempty set and
p is a partial metric on X. It is clear that, if p(x, y) = 0, then from (p1)
and (p2) x = y. But if x = y, p(x, y) may not be 0. A basic example of
a partial metric space is the pair (R+, p), where p(x, y) = max{x, y} for all
x, y ∈ R+. Other examples of the partial metric spaces which are interesting
from a computational point of view may be found in [5] and [10].

Let (X, d) and (X, p) be a metric space and partial metric space, respectively.

Lemma 1. Mappings ρi : X ×X −→ R+ (i ∈ {1, 2, 3}) defined by

ρ1(x, y) = d(x, y) + p(x, y)

ρ2(x, y) = d(x, y) + max{ω(x), ω(y)}
ρ3(x, y) = d(x, y) + a

define partial metrics on X, where ω : X −→ R+ is an arbitrary function and
a ≥ 0.

Each partial metric p on X generates a T0 topology τp on X which has as a
base the family of open p- balls

{Bp(x, ε) : x ∈ X, ε > 0},
where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

A sequence {xn} in a partial metric space (X, p) is said to (i) converge to a
point x ∈ X if and only if p(x, x) = lim

n→∞
p(x, xn) (ii) Cauchy sequence if there

exists lim
n,m→∞

p(xn, xm) which is is finite.

A partial metric space (X, p) is said to be complete if every Cauchy sequence
{xn} in X converges, with respect to τp, to a point x ∈ X such that p(x, x) =
limn,m→∞ p(xn, xm).

Suppose that {xn} is a sequence in partial metric space (X, p), then we
define L(xn) = {x|xn −→ x}.

The following example shows that every convergent sequence {xn} in a par-
tial metric space X may not be Cauchy. In particular, it shows that the limit
of a convergent sequence is not unique.

Example 1. Let X = [0,∞) and p(x, y) = max{x, y}. Let

xn =

{
0, n = 2k,
1, n = 2k + 1.

Then clearly it is convergent sequence and for every x ≥ 1 we have lim
n→∞

p(xn, x) =

p(x, x), therefore L(xn) = [1,∞). But lim
n,m→∞

p(xn, xm) does not exist.

The following Lemma shows that under certain conditions the limit is unique.

Lemma 2. Let {xn} be a convergent sequence in partial metric space X such
that xn −→ x and xn −→ y. If

lim
n→∞

p(xn, xn) = p(x, x) = p(y, y),
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then x = y.

Proof. As
p(x, y) ≤ p(x, xn) + p(xn, y)− p(xn, xn),

therefore
p(xn, xn) ≤ p(x, xn) + p(xn, y)− p(x, y).

By given assumptions, we have lim
n→∞

p(xn, x) = p(x, x), lim
n→∞

p(xn, y) = p(y, y),

and lim
n→∞

p(xn, xn) = p(x, x). Therefore

p(x, x) ≤ p(x, x) + p(y, y)− p(x, y)

which shows that p(y, y) ≤ p(x, y) ≤ p(y, y). Also,

p(x, y) ≤ p(y, xn) + p(xn, x)− p(xn, xn)

implies that
p(xn, xn) ≤ p(y, xn) + p(xn, x)− p(x, y)

which on taking limit as n→∞ gives

p(y, y) ≤ p(y, y) + p(x, x)− p(x, y)

and
p(x, x) ≤ p(x, y) ≤ p(x, x)

Thus p(x, x) = p(x, y) = p(y, y), therefore x = y. �

Lemma 3. Let {xn} and {yn} be two sequences in partial metric space X such
that

lim
n→∞

p(xn, x) = lim
n→∞

p(xn, xn) = p(x, x),

and
lim

n→∞
p(yn, y) = lim

n→∞
p(yn, yn) = p(y, y),

then lim
n→∞

p(xn, yn) = p(x, y). In particular, lim
n→∞

p(xn, z) = p(x, z) for every

z ∈ X.

Proof. As {xn} and {yn} converge to a x ∈ X and y ∈ X respectively, therefore
for each ε > 0 there exist n0 ∈ N such that

p(x, xn) < p(x, x) +
ε

2
, p(y, yn) < p(y, y) +

ε

2
, p(x, xn) < p(xn, xn) +

ε

2
and

p(y, yn) < p(yn, yn) +
ε

2
for n ≥ n0. Now

p(xn, yn) ≤ p(xn, x) + p(x, yn)− p(x, x)

≤ p(xn, x) + p(x, y) + p(y, yn)− p(y, y)− p(x, x)

< p(x, y) +
ε

2
+
ε

2
= p(x, y) + ε,

and so we have
p(xn, yn)− p(x, y) < ε.
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Also,

p(x, y) ≤ p(x, xn) + p(xn, y)− p(xn, xn)

≤ p(x, xn) + p(xn, yn) + p(yn, y)− p(yn, yn)− p(xn, xn)

<
ε

2
+
ε

2
+ p(xn, yn) = p(xn, yn) + ε

implies that

p(x, y)− p(xn, yn) < ε.

Hence for all n ≥ n0, we have |p(xn, yn) − p(x, y)| < ε. Hence the result
follows. �

Lemma 4. If p is a partial metric on X, then mappings ps, pm : X×X → R+

given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)

and

pm(x, y) = max
{
p(x, y)− p(x, x), p(x, y)− p(y, y)

}
define equivalent metrics on X.

Proof. It is easy to see that ps and pm are metrics on X. Obviously,

pm(x, y) ≤ ps(x, y)

for every x, y ∈ X. As for every positive real numbers a and b, we have a+ b ≤
2 max{a, b}, therefore

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)

≤ 2 max
{
p(x, y)− p(x, x), p(x, y)− p(y, y)

}
= 2pm(x, y).

Hence
1

2
ps(x, y) ≤ pm(x, y) ≤ ps(x, y).

So ps and pm are equivalent. �

Lemma 5. ([10], [12]) Let (X, p) be a partial metric space.
(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence

in the metric space (X, ps).
(b) A partial metric space (X, p) is complete if and only if the metric space

(X, ps) is complete. Furthermore, lim
n→∞

ps(xn, x) = 0 if and only if

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

Lemma 6. If {xn} is a convergent sequence in (X, ps), then it is a convergent
sequence in the partial metric space (X, p).
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Proof. As, lim
n→∞

ps(xn, x) = 0, and p(xn, xn) ≤ p(xn, x) for every n and x ∈ X,
therefore

p(xn, x)− p(x, x) ≤ ps(xn, x)

implies that
lim sup
n→∞

p(xn, x)− p(x, x) ≤ lim
n→∞

ps(xn, x)

and consequently, lim
n→∞

p(xn, x) = p(x, x). �

2. Main results

Theorem 1. Let (X, p) be a complete partial metric space. Let S, T : X −→ X
be two selfmappings.Suppose that there exists r ∈ [0, 1) such that

max{p(S(x), TS(x)), p(T (x), ST (x))} ≤ rmin{p(x, S(x)), p(x, T (x))} (2.1)

for every x ∈ X and that

α(y) = inf{p(x, y) + min{p(x, S(x)), p(x, T (x))} : x ∈ X} > 0 (2.2)

for every y ∈ X with y is not a common fixed point of S and T. Then there
exists z ∈ X such that z = S(z) = T (z). Moreover, if v = S(v) = T (v), then
p(v, v) = 0.

Proof. Let x0 ∈ X be arbitrary and define a sequence {xn} by

xn = S(xn−1), if n is odd

= T (xn−1), if n is even.

Then if n ∈ N is odd, we have

p(xn, xn+1) = p(S(xn−1), T (xn))

= p(S(xn−1), TS(xn−1))

≤ max{p(S(xn−1), TS(xn−1)), p(T (xn−1), ST (xn−1))}
≤ rmin{p(xn−1, S(xn−1)), p(xn−1, T (xn−1))}, by (2.1)

≤ rp(xn−1, S(xn−1))

= rp(xn−1, xn).

If n is even, then by (2.1), we have

p(xn, xn+1) = p(T (xn−1), S(xn))

= p(T (xn−1), ST (xn−1))

≤ max{p(T (xn−1), ST (xn−1)), p(S(xn−1), TS(xn−1))}
≤ rmin{p(xn−1, T (xn−1)), p(xn−1, S(xn−1))},
≤ rp(xn−1, T (xn−1))

= rp(xn−1, xn).

Thus for any positive integer n, it must be the case that

p(xn, xn+1) ≤ rp(xn−1, xn). (2.3)



6 SHABAN SEDGHI AND N. SHOBKOLAEI

By repeated application of (2.3), we obtain

p(xn, xn+1) ≤ rnp(x0, x1).

Also, we have

p(xn, xn) ≤ p(xn, xn+1) ≤ rnp(x0, x1)

and

p(xn+1, xn+1) ≤ p(xn, xn+1) ≤ rnp(x0, x1).

So, if m > n, then

p(xn, xm) ≤ p(xn, xn+1) + p(xn+1, xn+2) + · · ·+ p(xm−1, xm)

≤ [rn + rn+1 + · · ·+ rm−1]p(x0, x1)

≤ rn

1− r
p(x0, x1).

By definition,

ps(xn, xm) = 2p(xn, xm)− p(xm, xm)− p(xn, xn)

≤ 4
rn

1− r
.

Thus lim
n,m→∞

p(xn, xm) = 0.

That is {xn} is a Cauchy sequence in the metric space (X, ps). Since (X, p)
is complete then from Lemma 5, the sequence {xn} converges in the metric
space (X, ps), say lim

n→∞
ps(xn, z) = 0. Again from Lemma 5, we have

p(z, z) = lim
n→∞

p(xn, z) = lim
n,m→∞

p(xn, xm) = 0.

Assume that z is not a common fixed point of S and T. Then by hypothesis

0 < inf{p(x, z) + min{p(x, S(x)), p(x, T (x))} : x ∈ X}
≤ inf{p(xn, z) + min{p(xn, S(xn)), p(xn, T (xn))} : n ∈ N}

≤ inf
{ rn

1− r
p(x0, x1) + p(xn, xn+1) : n ∈ N

}
≤ inf

{ rn

1− r
p(x0, x1) + rnp(x0, x1) : n ∈ N

}
= 0

which is a contradiction. Therefore, z = S(z) = T (z).
If v = S(v) = T (v) for some v ∈ X, then

p(v, v) = max{p(S(v), TS(v)), p(T (v), ST (v))}
≤ rmin{p(v, S(v)), p(v, T (v))}
= rmin{p(v, v), p(v, v)}
= rp(v, v)

which gives that, p(v, v) = 0. �
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Example 2. Let (X, p) is a partial metric space where X = { 1n}
∞
n=1 ∪ {0}

and p(x, y) = max{x, y}. If define S : X −→ X by S(0) = 0, S( 1
2n ) = 1

4n+3 ,

S( 1
2n−1 ) = 0 and T (0) = 0 , T ( 1

2n−1 ) = 1
4n+4 and T ( 1

2n ) = 0. Then for x = 1
2n

we have

max{p(S(x), TS(x)), p(T (x), ST (x))}

= max{p(S(
1

2n
), T (S(

1

2n
))), p(T (

1

2n
), S(T (

1

2n
)))}

= max{ 1

4n+ 3
, 0)} =

1

4n+ 3

≤ rmin{p(x, S(x)), p(x, T (x))} = rmin{ 1

2n
,

1

2n
} = r

1

2n
.

It is easy to see that the above inequality is true for x = 1
2n−1 and r = 1

2 . Also,

α(y) = inf{p(x, y) + min{p(x, S(x)), p(x, T (x))} : x ∈ X} > 0 (2.4)

for every y ∈ X with y is not a common fixed point of S and T for 1
3 ≤ r < 1.

These shows that the all conditions of Theorem 1 are satisfied and 0 is a fixed
point for S, T .

Corollary 1. Let (X, p) be a complete partial metric space and let T : X −→ X
be a mapping. Suppose that there exists r ∈ [0, 1) such that

p(T (x), T 2(x)) ≤ rp(x, T (x))}

for every x ∈ X and that

α(y) = inf{p(x, y) + p(x, T (x)) : x ∈ X} > 0

for every y ∈ X with y 6= T (y). Then there exists z ∈ X such that z = T (z).
Moreover, if v = T (v), then p(v, v) = 0.

Proof. Taking S = T in Theorem 1, the conclusion of the Corollary follows. So
Corollary 1 can be treated as a special case of Theorem 1. �

Theorem 2. Let (X, p) be a complete partial metric space. Let S, T be map-
pings from X onto itself. Suppose that there exists r > 1 such that

min{p(TS(x), S(x)), p(ST (x), T (x))} ≥ rmax{p(Sx, x), p(Tx, x)} (2.5)

for every x ∈ X and that

α(y) = inf{p(x, y) + min{p(x, S(x)), p(x, T (x))} : x ∈ X} > 0 (2.6)

for every y ∈ X with y is not a common fixed point of S and T. Then there
exists z ∈ X such that z = S(z) = T (z). Moreover, if v = S(v) = T (v), then
p(v, v) = 0.
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Proof. Let x0 ∈ X be arbitrary. Since S is onto, there is an element x1 satisfying
x1 ∈ S−1(x0). Since T is also onto, there is an element x2 satisfying x2 ∈
T−1(x1). Proceeding in the same way, we can find x2n+1 ∈ S−1(x2n) and
x2n+2 ∈ S−1(x2n+1) for n = 1, 2, 3, · · · . Therefore, x2n = S(x2n+1 and x2n+1 =
S(x2n+2 for n = 0, 1, 2, · · · . If n = 2m, then using (2.4)

p(xn−1, xn) = p(x2m−1, x2m)

= p(Tx2m, Sx2m+1)

= p(TSx2m+1, Sx2m+1)

≥ min{p(TS(x2m+1), S(x2m+1)), p(ST (x2m+1), T (x2m+1))}
≥ rmax{p(Sx2m+1, x2m+1), p(Tx2m+1, x2m+1)}
≥ rp(Sx2m+1, x2m+1)

= rp(x2m, x2m+1)

= rp(xn, xn+1).

If n = 2m+ 1, then using (2.4)

p(xn−1, xn) = p(x2m, x2m+1)

= p(Sx2m+1, Tx2m+2)

= p(STx2m+2, Tx2m+2)

≥ min{p(TS(x2m+2), S(x2m+2)), p(ST (x2m+2), T (x2m+2))}
≥ rmax{p(Sx2m+2, x2m+2), p(Tx2m+2, x2m+2)}
≥ rp(Tx2m+2, x2m+2)

= rp(x2m+1, x2m+2)

= rp(xn, xn+1).

Thus for any positive integer n, it must be the case that

p(xn−1, xn) ≥ rp(xn, xn+1)

which implies that,

p(xn, xn+1) ≤ 1

r
p(xn−1, xn) ≤ · · · ≤ (

1

r
)np(x0, x1). (2.7)

Let α = 1
r , then 0 < α < 1 since r > 1.

Now, (2.6) becomes

p(xn, xn+1) ≤ αnp(x0, x1).

Also, we have

p(xn, xn) ≤ p(xn, xn+1) ≤ αnp(x0, x1)

and

p(xn+1, xn+1) ≤ p(xn, xn+1) ≤ αnp(x0, x1).
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So, if m > n, then

p(xn, xm) ≤ p(xn, xn+1) + p(xn+1, xn+2) + · · ·+ p(xm−1, xm)

≤ [αn + αn+1 + · · ·+ αm−1]p(x0, x1)

≤ αn

1− α
p(x0, x1).

By definition,

ps(xn, xm) = 2p(xn, xm)− p(xm, xm)− p(xn, xn)

≤ 4
αn

1− r
.

Thus lim
n,m→∞

p(xn, xm) = 0. That is {xn} is a Cauchy sequence in the met-

ric space (X, ps). Since (X, p) is complete then from Lemma 5, the sequence
{xn} converges in the metric space (X, ps), say lim

n→∞
ps(xn, z) = 0. Again from

Lemma 5, we have

p(z, z) = lim
n→∞

p(xn, z) = lim
n,m→∞

p(xn, xm) = 0.

Assume that z is not a common fixed point of S and T. Then by hypothesis

0 < inf{p(x, z) + min{p(x, S(x)), p(x, T (x))} : x ∈ X}
≤ inf{p(xn, z) + min{p(xn, S(xn)), p(xn, T (xn))} : n ∈ N}

≤ inf
{ αn

1− α
p(x0, x1) + p(xn−1, xn) : n ∈ N

}
≤ inf

{ αn

1− α
p(x0, x1) + αn−1p(x0, x1) : n ∈ N

}
= 0

which is a contradiction. Therefore, z = S(z) = T (z).
If v = S(v) = T (v) for some v ∈ X, then

p(v, v) = min{p(TS(v), S(v)), p(ST (v), T (v))}
≥ rmax{p(S(v), v), p(T (v), v)}
= rmax{p(v, v), p(v, v)}
= rp(v, v)

which gives that, p(v, v) = 0. �

Corollary 2. Let (X, p) be a complete partial metric space and let T : X −→ X
be an onto mapping. Suppose that there exists r ∈ [0, 1) such that

p(T 2(x), T (x)) ≥ rp(T (x), x)} (2.8)

for every x ∈ X and that

α(y) = inf{p(x, y) + p(T (x), x) : x ∈ X} > 0 (2.9)

for every y ∈ X with y 6= T (y). Then there exists z ∈ X such that z = T (z).
Moreover, if v = T (v), then p(v, v) = 0.
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Proof. Taking S = T in Theorem 2, we have the desired result. �

Corollary 3. Let (X, p) be a complete partial metric space and T be a mapping
of X into itself. If there is a real number r with r > 1 satisfying

p(T 2(x), T (x)) ≥ rp(T (x), x)}

for every x ∈ X, and T is onto continuous, then T has a fixed point.

Proof. Assume that there exists y ∈ X with y 6= T (y) and

inf{p(x, y) + p(T (x), x) : x ∈ X} = 0.

Then there exists a sequence {xn} such that

lim
n→∞

{p(xn, y) + p(T (xn), xn)} = 0.

So, we have p(xn, y) −→ 0 and p(T (xn), xn) −→ 0 as n −→∞. Now,

p(T (xn), y) ≤ p(T (xn), xn) + p(xn, y)− p(xn, xn) −→ 0 as n −→∞.

Since T is continuous, we have

T (y) = T ( lim
n→∞

xn) = lim
n→∞

T (xn) = y.

This is a contradiction. Hence if y 6= T (y), then

inf{p(x, y) + p(T (x), x) : x ∈ X} > 0,

which is condition (2.8) of Corollary 2. By Corollary 2, there exists z ∈ X such
that z = T (z). �

Now we give an example to support our result.

Example 3. Let X = [0,∞) and p(x, y) = max{x, y}. Define T : X −→ X by
T (x) = 2x.

Obviously T is onto and continuous. Also for each x, y ∈ X we have

p(T 2x, Tx) = max{4x, 2x} = 4x ≥ rmax{Tx, x}

where r = 2. Thus T satisfy the conditions given in Corollary 3 and 0 is the
unique common fixed point of T .

Corollary 4. Let (X, p) be a complete partial metric space and T be a mapping
of X into itself. If there is a real number r with r > 1 satisfying

p(T (x), T (y)) ≥ rmin{p(x, T (x)), p(T (y), y), p(x, y)} (2.10)

for every x, y ∈ X, and T is onto continuous, then T has a fixed point.
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Proof. Replacing y by T(x) in (2.9), we obtain

p(T (x), T 2(x)) ≥ rmin{p(x, T (x)), p(T 2(x), T (x)), p(x, T (x))} (2.11)

for all x ∈ X.
Without loss of generality, we may assume that T (x) 6= T 2(x). For, otherwise,
T has a fixed point. Since r > 1, it follows from (2.10) that

p(T 2(x), T (x)) ≥ rp(T (x), x)

for every x ∈ X. By the argument similar to that used in Corollary 3, we can
prove that, if y 6= T (y), then

inf{p(x, y) + p(T (x), x) : x ∈ X} > 0,

which is condition (2.8) of Corollary 2. So, Corollary 2 applies to obtain a fixed
point of T. �
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