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A FIXED POINT THEOREM ON PARTIAL METRIC SPACES
SATISFYING AN IMPLICIT RELATION

Chang Il Kim a and Gil Jun Han b, ∗

Abstract. Popa [14] proved the common fixed point theorem using implicit rela-
tions. Saluja [17] proved a fixed point theorem on complete partial metric spaces
satisfying an implicit relation. In this paper, we prove a fixed point theorem on
complete partial metric space satisfying another implicit relation.

1. Introduction and Preliminaries

Metric spaces have been generalized in various ways. Among them, the notion of
a partial metric space was introduced in 1992 by Matthews [7] to model computation
over a metric space. His goal was to study the reality of finding closer and closer
approximations to a given number and showing that contractive algorithms would
serve to find these approximations.

There exist many generalizations of the well-known Banach contraction mapping
principle in the literature. In particular, Matthews [7], [8] proved the Banach fixed
point theorem in partial metric spaces and after that, fixed point results in partial
metric spaces have been studied by many authors([1], [3], [4], [5], [6], [9], [10], [12],
[13], [15], [16], [17]).

The study of common fixed point theorems using implicit relations was introduced
by Popa [14]. Recently, Saluja [17] proved some fixed point theorems on complete
partial metric spaces satisfying implicit relations.

In this paper, we introduce very simple implicit relation which is different with
Popa and Saluja and we prove a fixed point theorem for a contraction mapping on
complete partial metric space satisfying a new implicit relation. Our results extend
and generalize several results from the existing literature.
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Now, we start with the following definition:

Definition 1.1. Let X be a non-empty set. Then a mapping d : X ×X −→ [0,∞)
is called a partial metric if for any x, y, z ∈ X, the following conditions hold:

(pm1) d(x, x) ≤ d(x, y),
(pm2) d(x, y) = d(y, x),
(pm3) if d(x, x) = d(x, y) = d(y, y), then x = y, and
(pm4) d(x, z) + d(y, y) ≤ d(x, y) + d(y, z).

In this case, (X, d) is called a partial metric space.

Example 1.2. (1) Let X = [0,∞) and d(x, y) = max{x, y} for all x, y ∈ X. Then
(X, d) is a partial metric space.
(2) Let X = {[a, b] | a, b ∈ R with a ≤ b} and d([a, b], [c, d]) = max{b, d}−min{a, c}.
Then (X, d) is a partial metric space.

Let (X, d) be a partial metric space. For any x ∈ X and ε > 0, let

Bd(x, ε) = {y ∈ X | d(x, y)− d(x, x) < ε}.

Lemma 1.3 ([8]). Let (X, d) be a partial metric space. Then we have the following:

(1) {Bd(x, ε) | x ∈ X, ε > 0} is a base for some topology τd,
(2) (X, τd) is a T0-space, and
(3) a sequence {xn} converges to x in (X, τd) if and only if limn→∞ d(xn, x) =

d(x, x).

Let (X, d) be a partial metric space. A sequence {xn} in (X, d) is called Cauchy if
limn,m→∞ d(xm, xn) exists and is finite and (X, d) is called complete if every Cauchy
sequence {xn} in (X, d) converges to x in (X, τd) such that

lim
n→∞ d(xn, x) = d(x, x) = lim

n,m→∞ d(xm, xn).

Lemma 1.4 ([11]). Let (X, d) be a partial metric space. Then a sequence {xn} con-
verges to x in (X, τd) with d(x, x) = 0 if and only if for any y ∈ X, limn→∞ d(xn, y) =
d(x, y).

First, the well-known Banach contraction theorem [2] is stated as follows:

Theorem 1.5 ([2]). Let (X, d) be a complete metric space and let f : X −→ X be
a contraction mapping, that is, there exists λ ∈ [0, 1) such that

d(fx, fy) ≤ λd(x, y)
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for all x, y ∈ X. Then f has a unique fixed point.

Matthews [8] proved the following Banach fixed point theorem in partial metric
spaces.

Theorem 1.6 ([8]). Let (X, d) be a complete partial metric space and let f : X −→
X be a contraction mapping, that is, there exists λ ∈ [0, 1) such that

d(fx, fy) ≤ λd(x, y)

for all x, y ∈ X. Then f has a unique fixed point u ∈ X with d(u, u) = 0.

Now, let Σ be the set of all functions β : [0,∞) −→ [0, 1) which satisfies

lim
n→∞β(tn) = 1 ⇒ lim

n→∞ tn = 0.

Dukic, Kadelburg, and Radenovic [5] proved the following fixed point theorem
for Geraghty contractions :

Theorem 1.7 ([5]). Let (X, d) be a complete partial metric space and f : X −→ X

be a mapping. Suppose that there is a β ∈ Σ such that

(1.1) d(fx, fy) ≤ β(d(x, y))d(x, y)

for all x, y ∈ X. Then f has a unique fixed point u ∈ X with d(u, u) = 0.

Altun and Sadarangani [1] proved the following fixed point theorem for Geraghty
contractions :

Theorem 1.8 ([1]). Let (X, d) be a complete partial metric space. Suppose that
f : X −→ X is a mapping such that there is a β ∈ Σ with

d(fx, fy) ≤ β(A(x, y))max{d(x, y), d(x, fx), d(y, fy)}
for all x, y ∈ X, where

A(x, y) = max
{

d(x, y), d(x, fx), d(y, fy),
1
2
[d(x, fy) + d(fx, y)]

}
.

Then f has a unique fixed point u in X.

Theorem 1.9 ([17]). Let (X, d) be a complete partial metric space and f : X −→ X

be a mapping satisfying the inequality

(1.2) d(fx, fy) ≤ ψ
(
d(x, y),

1
2
[d(x, fx) + d(y, fy)],

1
2
[d(x, fy) + d(fx, y)]

)

for all x, y ∈ X, where ψ : [0,∞)3 −→ [0,∞) is a real valued continuous and non-
decreasing function in the first argument for three variables. For some µ ∈ [0, 1), ψ

satisfies the following conditions:
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(Ir1) If y ≤ ψ
(
x, x+y

2 , x+y
2

)
, then y ≤ µx.

(Ir2) If y ≤ ψ(y, 0, y), then y = 0.
(Ir3) If y ≤ ψ

(
0, y

2 , y
2

)
, then y = 0.

Then f has a unique fixed point in X.

2. Main Results

In this section, we introduce a new implicit relation and a fixed point theorem
on complete partial metric spaces satisfying a new implicit relation.

Let Φ be the family of real valued continuous non-decreasing functions φ :
[0,∞)4 −→ [0,∞) such that

(2.1) b < φ(a, b, b, a) ⇒ φ(a, b, b, a) = a.

Lemma 2.1. Let φ ∈ Φ. Then we have the following:

(1) if a ≤ φ(a, a, a, a), then φ(a, a, a, a) = a,

(2) if a ≤ φ(a, 0, 0, a), then φ(a, 0, 0, a) = a, and
(3) if b ≤ φ(a, a, b, a+b

2 ), then b ≤ a.

Proof. (1) Suppose that a ≤ φ(a, a, a, a). If a < φ(a, a, a, a), then by (2.1), a < a

which is a contradition. Hence one has result.
(2) Suppose that a ≤ φ(a, 0, 0, a). If a = 0, then by (1), φ(a, 0, 0, a) = φ(0, 0, 0, 0) =

0. If 0 < a, then 0 < φ(a, 0, 0, a) and by (2.1), φ(a, 0, 0, a) = a.

(3) Suppose that b ≤ φ(a, a, b, a+b
2 ). Assume that a < b. Then

a + b

2
< b ≤ φ

(
a, a, b,

a + b

2

)
≤ φ

(a + b

2
, b, b,

a + b

2

)

and by (2.1), we have a+b
2 < b ≤ a+b

2 which is a contradiction. ¤

Now, we will prove a fixed point theorem on complete partial metric spaces
satisfying the implicit relation (2.1).

Theorem 2.2. Let (X, d) be a complete partial metric space and f : X −→ X be a
mapping. Suppose that there are β ∈ Σ and φ1 ∈ Φ such that

(2.2) d(f(x), f(y)) ≤ β(φ1(x, y))φ1(x, y)

for all x, y ∈ X, where

φ1(x, y) = φ
(
d(x, y), d(x, fx), d(y, fy),

1
2
[d(x, fy) + d(fx, y)]

)
.

Then there is a unique fixed point u of f with d(u, u) = 0.
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Proof. Let x ∈ X. For any n ∈ N, let fn+1x = ffnx, xn = fnx, and αn =
d(xn, xn+1). If αm = 0 for some m ∈ N, then xm = xm+1, that is, xm is a fixed
point of f and d(xm, xm) = 0.

Suppose that d(xn, xn+1) > 0 for all n ∈ N. Since 0 ≤ β(t) < 1 for all t ≥ 0, by
(2.2) and (pm4),

αn+1 ≤ β(φ1(xn+1, xn))φ
(
αn, αn, αn+1,

1
2
[αn + αn+1]

)

≤ φ
(
αn, αn, αn+1,

1
2
[αn + αn+1]

)(2.3)

for all n ∈ N. Hence by Lemma 2.1, {αn} is a bounded below real decreasing
sequence. Thus there is a non-negative real number α with limn→∞ αn = α. Since
φ is continuous, by (2.3), we have

(2.4) α ≤ lim
n→∞β(φ1(xn+1, xn))φ(α, α, α, α) ≤ φ(α, α, α, α)

and by Lemma 2.1, we have

(2.5) lim
n→∞β(φ1(xn+1, xn))α = α.

If limn→∞ β(φ1(xn+1, xn)) = 1, then limn→∞ φ1(xn+1, xn) = α = 0 and hence

(2.6) lim
n→∞αn = lim

n→∞ d(xn, xn+1) = 0

because 0 ≤ limn→∞ β(φ1(xn+1, xn)) ≤ 1. If limn→∞ β(φ1(xn+1, xn)) < 1, then by
(2.5), we have (2.6).

Now, we will show that {xn} is a Cauchy sequence in (X, d). Enough to show
that limn,m→∞ d(xm, xn) = 0. Suppose that limn,m→∞ d(xm, xn) 6= 0. Then there is
an ε > 0 and there are subsequences {xm(k)}, {xn(k)} of {xn} such that m(k) > n(k),

(2.7) d(xm(k), xn(k)) ≥ ε,

and

(2.8) d(xm(k)−1, xn(k)) < ε

for all k ∈ N. By (2.7) and (2.8), we have

ε ≤ d(xm(k), xn(k))

≤ d(xm(k), xm(k)−1) + d(xm(k)−1, xn(k))− d(xm(k)−1, xm(k)−1)

< d(xm(k), xm(k)−1) + ε

(2.9)

for all k ∈ N. By (2.6) and (2.9), we have

(2.10) lim
k→∞

d(xm(k), xn(k)) = ε.
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Since d(xm(k)−1, xn(k)−1) ≤ d(xm(k)−1, xm(k))+d(xm(k), xn(k))+d(xn(k), xn(k)−1), for
all k ∈ N, by (2.6) and (2.10),

(2.11) lim
k→∞

d(xm(k)−1, xn(k)−1) ≤ ε.

and since d(xm(k), xn(k)) ≤ d(xm(k), xm(k)−1)+d(xm(k)−1, xn(k)−1)+d(xn(k)−1, xn(k))
for all k ∈ N, by (2.6) and (2.7),

(2.12) ε ≤ lim
k→∞

d(xm(k)−1, xn(k)−1).

By (2.11) and (2.12), we have

(2.13) lim
k→∞

d(xm(k)−1, xn(k)−1) = ε.

By (2.8), we have

d(xm(k), xn(k))

≤ β(φ1(xm(k)−1, xn(k)−1))φ1(xm(k)−1, xn(k)−1)

≤ β(φ1(xm(k)−1, xn(k)−1))φ
(
d(xm(k)−1, xn(k)−1), d(xm(k)−1, xm(k)),

d(xn(k), xn(k)−1),
1
2
[ε + d(xm(k), xn(k)) + d(xn(k), xn(k)−1)]

)

and since φ is continuous, by (2.6), (2.10), and (2.13),

ε ≤ lim
k→∞

d(xm(k), xn(k)) ≤ lim
k→∞

β(φ1(xm(k)−1, xn(k)−1))φ(ε, 0, 0, ε)

By Lemma 2.1, we get limk→∞ β(φ1(xm(k)−1, xn(k)−1)) = 1.
Since β ∈ Σ, limk→∞ φ1(xm(k)−1, xn(k)−1) = 0 and so limn→∞ d(xm(k), xn(k)) = 0

which is a contradiction. Thus limn,m→∞ d(xm, xn) = 0 and so {xn} is a Cauchy
sequence in (X, d).

Since (X, d) is a complete partial metric space, there is an u in X such that
limn→∞ d(xn, u) = d(u, u) = limn,m→∞ d(xn, xm) and hence

(2.14) lim
n→∞ d(xn, u) = d(u, u) = 0.

By Lemma 1.4 and (2.14), we have

(2.15) lim
n→∞ d(xn, fu) = d(u, fu) = 0

and by (pm1) and (2.15), d(u, u) = d(u, fu) = d(fu, fu). By (pm4), fu = u and
thus u is a fixed point of f .



FIXED POINT THEOREM ON PARTIAL METRIC SPACES 31

To prove the uniqueness of u, let v be another fixed point of f with d(v, v) = 0.
By (2.2) and Lemma 2.1,

d(u, v) = d(fu, fv) ≤ β(φ1(u, v))φ(d(u, v), d(u, u), d(v, v), d(u, v))

= β(φ(d(u, v), 0, 0, d(u, v)))φ(d(u, v), 0, 0, d(u, v))

= β(d(u, v))d(u, v).

Since 0 ≤ β(d(u, v)) < 1, u = v. ¤

3. Applications

By Theorem 2.2 which is our main result, we have the following Theorem :

Theorem 3.1. Let (X, d) be a complete partial metric space and f : X −→ X be a
mapping. Let φ ∈ Φ and ψ : [0,∞)4 −→ [0,∞) be a mapping satisfying

(3.1) ψ(a1, a2, a3, a4) ≤ φ(a1, a2, a3, a4)

for all a1, a2, a3, a4 ∈ [0,∞). Suppose that there is a β ∈ Σ with

d(f(x), f(y)) ≤ β
(

max
{

d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(fx, y)

2

})

ψ
(
d(x, y), d(x, fx), d(y, fy),

d(x, fy) + d(fx, y)
2

)

for all x, y ∈ X. Then f has a unique fixed point u ∈ X with d(u, u) = 0.

Let φ(a, b, c, d) = max{a, b, c, d} and ψ(a, b, c, d) = a, d, b+c
2 , or max{a, b+c

2 , d}.
Then φ ∈ Φ and φ, ψ satisfy (3.1). Then, using Theorem 2.2 and Theorem 3.1, we
have the following corollary :

Corollary 3.2. Let (X, d) be a complete partial metric space and f : X −→ X be a
mapping. Suppose that there is a β ∈ Σ such that

d(f(x), f(y))

≤ β
(

max
{

d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(fx, y)

2

})
M(x, y)

for all x, y ∈ X, where

M(x, y) = d(x, y),
d(x, fy) + d(x, fy)

2
,
d(x, fx) + d(y, fy)

2
,

or max
{

d(x, y),
d(x, fx) + d(y, fy)

2
,
d(x, fy) + d(fx, y)

2

}
.

Then f has a unique fixed point u ∈ X with d(u, u) = 0.
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Let φ(a, b, c, d) = a, d, b+c
2 , max{a, b, c}, max{a, b, c, d}, max{a, b+c

2 },or max{a, b+c
2 , d}.

Then φ ∈ Φ. By choosing ψ appropriately for each φ, we can get a lot of re-
sults, including previous fixed point theorems. For examples, letting φ(a, b, c, d) =
ψ(a, b, c, d) = a and β(t) = λ(0 ≤ λ < 1) in Theorem 3.1, we have Theorem 1.6 and
letting φ(a, b, c, d) = ψ(a, b, c, d) = a in Theorem 3.1, we have Theorem 1.7 for all
β ∈ Σ. Further, letting φ(a, b, c, d) = max{a, b, c, d} and ψ(a, b, c, d) = max{a, b, c}
in Theoremy 3.1, we have Theorem 1.8 for all β ∈ Σ.

Now, for some real valued continuous non-decreasing function ψ that does not
satisfy the implicity relation of Theorem 1.9, we present an example that can solve
the fixed point problem using Theorem 2.2.

Example 3.3. Let X = {0, 1, 2} and d : X ×X −→ [0,∞) be a map defined by

d(0, 0) = d(1, 1) = 0, d(0, 1) = d(1, 0) = 1,

d(0, 2) = d(2, 0) =
3
2
, d(1, 2) = d(2, 1) =

8
5
, d(2, 2) =

1
2
.

Then clearly (X, d) is a partial metric space. Now, let {xn} be a Cauchy sequence
in (X, d). Then there is a k ∈ N such that for any n, m ≥ k,

d(xn, xm) <
1
5

and by the definition of d, for any n,m ≥ k ,

xn = xm.

Hence {xn} converges to xk in (X, d) and thus (X, d) is a complete partial metric
space .

Define a mapping ψ : [0,∞)3 −→ [0,∞) by ψ(a, b, c) = max{a, b, c} and a map-
ping f : X −→ X by

f(0) = f(1) = 0, f(2) = 1.

Then we have

(3.2) d(fx, fy) ≤ ψ
(
d(x, y),

d(x, fx) + d(y, fy)
2

,
d(x, fy) + d(fx, y)

2

)

but ψ does not satisfy (Ir1) in Theorem 1.9 . Hence we can not apply Theorem 1.9
for (3.2). Define a mapping φ : [0,∞)4 −→ [0,∞) by φ(a, b, c, d) = max{a, b, c, d}
and define a mapping β : [0,∞) −→ [0, 1) by β(t) = 2

3 . Then φ ∈ Φ and by (3.2),
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we have

d(fx, fy) ≤ β
(

max
{

d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(fx, y)

2

})

max
{

d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(fx, y)

2

}

for all x, y ∈ X, because max
{

a, b+c
2 , d

}
≤ max{a, b, c, d}. By Theorem 2.2 , f has

a unique fixed point with d(u, u) = 0.

4. Conclusion

In this paper, we introduce a new implicit relation that is different from the
existing implicit relation and we prove Theorem 2.2 which is a fixed point theorem
for a contraction mapping on complete partial metric space satisfying a new implicit
relation. As its applications, using this fixed point theorem, we prove existing fixed-
point theorems and finally, for some real valued continuous non-decreasing function
ψ that does not satisfy the implicity relation of Theorem 1.9, we present an example
that can solve the fixed point problem using Theorem 2.2.
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