• Title/Summary/Keyword: Parallel-output converters

Search Result 72, Processing Time 0.023 seconds

Input Voltage Sharing Control for Input-Series-Output-Parallel DC-DC Converters without Input Voltage Sensors

  • Guo, Zhiqiang;Sha, Deshang;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.83-87
    • /
    • 2012
  • Input-series-output-parallel (ISOP) modular converters consisting of multiple modular DC/DC converters can enable low voltage rating switches for use in high voltage input applications. In this paper, an input voltage sharing control strategy for input-series-output-parallel (ISOP) full-bridge (FB) DC/DC converters is proposed. By sensing the difference in the input current of two modules, the system can achieve input voltage sharing for DC-DC modules. The effectiveness of the proposed control strategy is verified by simulation and experimental results obtained with a 200w-50kHz prototype.

Digital Control Strategy for Input-Series-Output-Parallel Modular DC/DC Converters

  • Sha, Deshang;Guo, Zhiqiang;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.245-250
    • /
    • 2010
  • Input-series-output-parallel (ISOP) converters consisting of multiple modular DC/DC converters can enable low voltage rating switches to be used under high voltage input applications. This paper presents a digital control strategy, which can achieve equal sharing of input voltage for a modular ISOP system consisting of two-transistor forward DC/DC converters by forcing the input voltages of neighboring modules to be equal. The proposed scheme is analyzed using small signals analysis based on the state space average method. The performance of the proposed control strategy is verified with an experimental prototype of an ISOP converter made up of three two-switch forward converters.

Comparison and analysis of control algorithms of single-phase AC/DC parallel converters (단상 AC/DC 병렬 컨버터 제어 알고리즘의 비교, 분석)

  • 이강희
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.290-293
    • /
    • 2000
  • In this paper the algorithm which controls output voltage and power factor independently and the algorithm which controls output voltage with fixed unity power factor are compared and analyzed. These algorithms are applied to single-phase AC/DC parallel are applied to single-phase AC/DC parallel converters for a high speed train system. The control characteristic of the algorithms are compared and analyzed with respect to the output voltage and input power factor when system parameters vary.

  • PDF

DSP Based Series-Parallel Connected Two Full-Bridge DC-DC Converter with Interleaving Output Current Sharing

  • Sha, Deshang;Guo, Zhiqiang;Lia, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.673-679
    • /
    • 2010
  • Input-series-output-parallel (ISOP) connected DC-DC converters enable low voltage rating switches to be used in high voltage input applications. In this paper, a DSP is adopted to generate digital phase-shifted PWM signals and to fulfill the closed-loop control function for ISOP connected two full-bridge DC-DC converters. Moreover, a stable output current sharing control strategy is proposed for the system, with which equal sharing of the input voltage and the load current can be achieved without any input voltage control loops. Based on small signal analysis with the state space average method, a loop gain design with the proposed scheme is made. Compared with the conventional IVS scheme, the proposed strategy leads to simplification of the output voltage regulator design and better static and dynamic responses. The effectiveness of the proposed control strategy is verified by the simulation and experimental results of an ISOP system made up of two full-bridge DC-DC converters.

Analysis and Control of a Modular MV-to-LV Rectifier based on a Cascaded Multilevel Converter

  • Iman-Eini, Hossein;Farhangi, Shahrokh;Khakbazan-Fard, Mahboubeh;Schanen, Jean-Luc
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.133-145
    • /
    • 2009
  • In this paper a modular high performance MV-to-LV rectifier based on a cascaded H-bridge rectifier is presented. The proposed rectifier can directly connect to the medium voltage levels and provide a low-voltage and highly-stable DC interface with the consumer applications. The input stage eliminates the necessity for heavy and bulky step-down transformers. It corrects the input power factor and maintains the voltage balance among the individual DC buses. The second stage includes the high frequency parallel-output DC/DC converters which prepares the galvanic isolation, regulates the output voltage, and attenuates the low frequency voltage ripple ($2f_{line}$) generated by the first stage. The parallel-output converters can work in interleaving mode and the active load-current sharing technique is utilized to balance the load power among them. The detailed analysis for modeling and control of the proposed structure is presented. The validity and performance of the proposed topology is verified by simulation and experimental results.

Fault Detection and Isolation of Parallel Operation of Two Converters Using Zero Current Transformer Method (영상변류기 동작 방식을 이용한 2개의 컨버터 병렬 운전시 고장 탐지 및 분리)

  • 손승찬;성세진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.409-416
    • /
    • 2000
  • In case of operating two converters in parallel with ZCT operation method using one current sensor for fault tolerance by system characteristics, identifying fault detection and isolation is difficult of which converter is fault since the ZCT output is a difference of two converters' supply current when a converter has fault. This thesis suggest a fault detection and isolation method of converter in case of operating two converters in parallel for fault tolerant system and verified this suggested method through an experiment.

  • PDF

Current Source Type Pulse Generator with Improved Output Voltage Waveform for High Voltage Capacitively Coupled Plasma System (고전압 용량성 결합 플라즈마 시스템의 개선된 전압 파형 출력을 위한 펄스 전류 발생장치 회로)

  • Chae, Beomseok;Min, Juhwa;Suh, Yongsug;Kim, Hyunbae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.153-160
    • /
    • 2019
  • This study proposes a current source-type pulse generator to improve output voltage and current waveforms under a capacitively coupled plasma (CCP) system. The proposed circuit comprises two parallel-connected current source-type converters. These converters can satisfy the required output waveforms of plasma processing. The parallel-connected converters operate without reverse current fault by applying a time-delay control technique. Conventional voltage source converters based on pulse power supply exhibit drawbacks in short-circuit current, and problems occur when they are applied to a CCP system. The proposed pulse power supply based on a current source converter fundamentally solves the short-circuit current problem. Therefore, this topology can improve the voltage and current accuracy of a CCP system.

Interleaved High Step-Up Boost Converter

  • Ma, Penghui;Liang, Wenjuan;Chen, Hao;Zhang, Yubo;Hu, Xuefeng
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.665-675
    • /
    • 2019
  • Renewable energy based on photovoltaic systems is beginning to play an important role to supply power to remote areas all over the world. Owing to the lower output voltage of photovoltaic arrays, high gain DC-DC converters with a high efficiency are required in practice. This paper presents a novel interleaved DC-DC boost converter with a high voltage gain, where the input terminal is interlaced in parallel and the output terminal is staggered in series (IPOSB). The IPOSB configuration can reduce input current ripples because two inductors are interlaced in parallel. The double output capacitors are charged in staggered parallel and discharged in series for the load. Therefore, IPOSB can attain a high step-up conversion and a lower output voltage ripple. In addtion, the output voltage can be automatically divided by two capacitors, without the need for extra sharing control methods. At the same time, the voltage stress of the power devices is lowered. The inrush current problem of capacitors is restrained by the inductor when compared with high gain converters with a switching-capacitor structure. The working principle and steady-state characteristics of the converter are analyzed in detail. The correctness of the theoretical analysis is verified by experimental results.

Simulation Analysis of Control Methods for Parallel Multi-Operating System constructed by the Same Output Power Converters

  • Ishikura, Keisuke;Inaba, Hiromi;Kishine, Keiji;Nakai, Mitsuki;Ito, Takuma
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.282-288
    • /
    • 2014
  • A large capacity power conversion system constructed by using two or more existing power converters has a lot of flexibility in how the power converters are used. However, at the same time, it has a problem of cross current flows between power converters. The cross current must be suppressed by controlling the system while miniaturizing the combination reactor. This paper focuses on two current control methods of a power conversion system constructed by using two power converters connected in parallel supplying the same power. In order to elucidate the control performance of cross current, each control method which are aimed at controlling cross current and not directly controlling it are examined in simulations.

The Parallel Operation of Single Phase PWM Rectifier using IGBT (IGBT를 이용한 단산 PWM정류기 병렬운전)

  • 이현원;장성영;김연준;이광주;김남해
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.122-125
    • /
    • 1999
  • The AC-to-DC single-phase PWM rectifier for traction applications using high power semiconductor, IGCT is made and tested. Parallel operation of two PWM converter is adopted for increasing capacity of converters. For reducing harmonics, the harmonic content is eliminated by the phase shift between two converters switching phase. The output voltage control is achieved by interns calculation without detecting the input current. The part of PLL used for controlling power factor is simply implemented by software.

  • PDF