• 제목/요약/키워드: Parabolic problems

검색결과 75건 처리시간 0.032초

TWO-SCALE PRODUCT APPROXIMATION FOR SEMILINEAR PARABOLIC PROBLEMS IN MIXED METHODS

  • Kim, Dongho;Park, Eun-Jae;Seo, Boyoon
    • 대한수학회지
    • /
    • 제51권2호
    • /
    • pp.267-288
    • /
    • 2014
  • We propose and analyze two-scale product approximation for semilinear heat equations in the mixed finite element method. In order to efficiently resolve nonlinear algebraic equations resulting from the mixed method for semilinear parabolic problems, we treat the nonlinear terms using some interpolation operator and exploit a two-scale grid algorithm. With this scheme, the nonlinear problem is reduced to a linear problem on a fine scale mesh without losing overall accuracy of the final system. We derive optimal order $L^{\infty}((0, T];L^2({\Omega}))$-error estimates for the relevant variables. Numerical results are presented to support the theory developed in this paper.

HIGHER ORDER DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS FOR NONLINEAR PARABOLIC PROBLEMS

  • Ohm, Mi Ray;Lee, Hyun Young;Shin, Jun Yong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권4호
    • /
    • pp.337-350
    • /
    • 2014
  • In this paper, we consider discontinuous Galerkin finite element methods with interior penalty term to approximate the solution of nonlinear parabolic problems with mixed boundary conditions. We construct the finite element spaces of the piecewise polynomials on which we define fully discrete discontinuous Galerkin approximations using the Crank-Nicolson method. To analyze the error estimates, we construct an appropriate projection which allows us to obtain the optimal order of a priori ${\ell}^{\infty}(L^2)$ error estimates of discontinuous Galerkin approximations in both spatial and temporal directions.

열전도 방정식의 시간 불연속 유한요소법 적용 (An Application of Time Discontinuous Finite Element Method for Heat Conduction Problems)

  • 김치경
    • 한국안전학회지
    • /
    • 제23권3호
    • /
    • pp.87-92
    • /
    • 2008
  • 시간에 불연속성인 유한요소법이 열전도 방정식에 적용하였다. 근사값은 고정된 시간에 공간변수에는 연속이며 그러나 각 시간 구간에서는 시간변수에 불연속을 허용하였다. 이 유한요소법은 지금까지 많이 알려진 재래식 유한요소해석에 보다 해의 수렴속도가 빠르고 해를 쉽게 얻을 수 있으며 지반이 동결된 동상지반과 같이 복잡한 공학문제와 같은 동적 경계치 문제에 쉽게 접근할 수 있었다. 다차원 문제에도 적용이 가능하며 본 연구에서는 일차원, 이차원 열전도 문제에 적용하였다. 결과 치를 해석해와 비교 검토하였다.

A PRIORI ERROR ESTIMATES AND SUPERCONVERGENCE PROPERTY OF VARIATIONAL DISCRETIZATION FOR NONLINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS

  • Tang, Yuelong;Hua, Yuchun
    • Journal of applied mathematics & informatics
    • /
    • 제31권3_4호
    • /
    • pp.479-490
    • /
    • 2013
  • In this paper, we investigate a priori error estimates and superconvergence of varitional discretization for nonlinear parabolic optimal control problems with control constraints. The time discretization is based on the backward Euler method. The state and the adjoint state are approximated by piecewise linear functions and the control is not directly discretized. We derive a priori error estimates for the control and superconvergence between the numerical solution and elliptic projection for the state and the adjoint state and present a numerical example for illustrating our theoretical results.

ANALYSIS OF THE VLASOV-POISSON EQUATION BY USING A VISCOSITY TERM

  • Choi, Boo-Yong;Kang, Sun-Bu;Lee, Moon-Shik
    • 충청수학회지
    • /
    • 제26권3호
    • /
    • pp.501-516
    • /
    • 2013
  • The well-known Vlasov-Poisson equation describes plasma physics as nonlinear first-order partial differential equations. Because of the nonlinear condition from the self consistency of the Vlasov-Poisson equation, many problems occur: the existence, the numerical solution, the convergence of the numerical solution, and so on. To solve the problems, a viscosity term (a second-order partial differential equation) is added. In a viscosity term, the Vlasov-Poisson equation changes into a parabolic equation like the Fokker-Planck equation. Therefore, the Schauder fixed point theorem and the classical results on parabolic equations can be used for analyzing the Vlasov-Poisson equation. The sequence and the convergence results are obtained from linearizing the Vlasove-Poisson equation by using a fixed point theorem and Gronwall's inequality. In numerical experiments, an implicit first-order scheme is used. The numerical results are tested using the changed viscosity terms.

APPROXIMATE CONTROLLABILITY FOR NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Jeong, Jin-Mun;Rho, Hyun-Hee
    • Journal of applied mathematics & informatics
    • /
    • 제30권1_2호
    • /
    • pp.173-181
    • /
    • 2012
  • In this paper, we study the control problems governed by the semilinear parabolic type equation in Hilbert spaces. Under the Lipschitz continuity condition of the nonlinear term, we can obtain the sufficient conditions for the approximate controllability of nonlinear functional equations with nonlinear monotone hemicontinuous and coercive operator. The existence, uniqueness and a variation of solutions of the system are also given.