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ABSTRACT. In this paper, we consider discontinuous Galerkin finite element methods with
interior penalty term to approximate the solution of nonlinear parabolic problems with mixed
boundary conditions. We construct the finite element spaces of the piecewise polynomials
on which we define fully discrete discontinuous Galerkin approximations using the Crank-
Nicolson method. To analyze the error estimates, we construct an appropriate projection which
allows us to obtain the optimal order of a priori ℓ∞(L2) error estimates of discontinuous
Galerkin approximations in both spatial and temporal directions.

1. INTRODUCTION

Discontinuous Galerkin finite element methods(DGM) have recently received a lot of in-
terest. The advantage of DGM is the flexible decomposition of the spatial domain and the
construction of the spaces of finite elements consisting of different order of polynomials with-
out continuity requirement. Since the classical DGM was first introduced by Nitsche [8] as
a method which enforced the Dirichlet boundary conditions weakly, various types of DGMs
are applied to solve time dependent problems as well as elliptic problems. And the DGM
was applied to solve the interface problems in [5, 6]. In [3], the authors introduced the local
DGM for time-dependent convection-diffusion systems and analyzed the convergence of the
approximations.

In [10], Rievière and Wheeler formulated and analyzed a family of discontinuous methods
to approximate the solution of the transport problem with nonlinear reaction. They constructed
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semidiscrete approximations which converge optimally in h and suboptimally in p for the en-
ergy norm and suboptimally for the L2 norm. They also constructed fully discrete approxima-
tions and proved the optimal convergence in the temporal direction. To solve reactive transport
problems, Sun and Wheeler in [14] analyzed three discontinuous Galerkin methods, which
were symmetric interior penalty Galerkin method, nonsymmetric interior penalty Galerkin
method, and incomplete interior penalty Galerkin method. They obtained error estimates in
L2(H1) which are optimal in h and nearly optimal in p and they developed a parabolic lift-
technique for SIPG which leads to h-optimal and nearly p-optimal error estimates in L2(L2)
and negative norms.

Rievière and Wheeler [13] formulated semidiscrete and a family of time-discrete locally con-
servative discontinuous Galerkin procedures for approximations to nonlinear parabolic equa-
tions and obtained the optimal spatial rates in H1 and time truncation errors in L2. In [9],
the authors constructed discontinuous Galerkin semidiscrete approximations of the nonlinear
parabolic differential problems and proved the optimal order of convergence in L2 normed
space. Furthermore the authors in [7] applied the hp-version discontinuous Galerkin finite el-
ement method with interior penalty to semilinear parabolic problems with locally Lipschitz
continuous nonlinearity and analyzed the error bound of the spatially semidiscrete hp-DGM.

Rievière and Shaw [11] developed the discontinuous Galerkin finite element approximation
of a nonlinear model of non-fickian diffusion in viscoelastic polymers and proved optimal
orders of convergence. In [12], the authors considered dynamic linear solid viscoelasticity
problems, defined a fully discrete approximation based on a spatially discontinuous Galerkin
finite element method and provided an a priori error estimate. We may refer other references
[4, 15] concerning DGM applied to time-dependent problems, for example, the Camassa-Holm
equation or the Keller-Segel chemitoxis model.

In this paper, we approximate the solution of nonlinear parabolic problems using a discontin-
uous Galerkin method with interior penalties for the spatial discretization and Crank-Nicolson
method for the time stepping. The main object of this paper is to obtain the optimal ℓ∞(L2)
error estimates in both spatial and temporal directions by adopting an appropriate elliptic-type
projection. The rest of this paper is organized as follows: In section 2, we introduce our prob-
lem and some notations. In section 3, we construct appropriate finite element spaces, define
an elliptic-type projection, and prove its approximation properties. In section 4, by applying
the Crank-Nicilson method, we construct discontinuous Galerkin fully discrete approximations
which yield optimal order convergence in the temporal direction as well as the spatial direction.
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2. MODEL PROBLEM AND NOTATIONS

In this paper, we consider the following nonlinear parabolic equation:

ut −∇ · {a(x, u)∇u} = f(x, t, u), in Ω× (0, T ],

u = gD, on ∂ΩD × (0, T ],

(a(x, u)∇u) · n = gN , on ∂ΩN × (0, T ],

u(x, 0) = u0(x), in Ω,

(2.1)

where Ω denotes an open convex polygonal domain in Rd, d = 1, 2, 3 with its boundary ∂Ω,
∂Ω = ∂ΩD ∪ ∂ΩN , ∂ΩD ∩ ∂ΩN = ϕ, T is a given positive real number, n denotes the unit
outward normal vector to ∂Ω, and u0(x) and f(x, t, u) are given functions. We assume that
u0(x) ∈ Hs(Ω) and f satisfies the locally Lipschitz continuous condition in u and assume that
there exist positive constants a∗ and a∗ such that a∗ ≤ a(x, u) ≤ a∗ for all (x, u), and au, auu,
and auuu are bounded.

Let Ωh = {Ki}Nh
i=1 be a regular quasi-uniform subdivision of Ω where Ki is an interval if

d = 1, Ki is a triangle or a quadrilateral if d = 2 , and Ki is a 3-simplex or parallelogram if
d = 3. Let hj = diam(Kj) and h = max

1≤j≤Nh

hj . The regular subdivision requires that there

exists a constant ρ > 0 such that each Kj contains a ball of radius ρhj . The quasi-uniformity
requires the existence of a constant γ > 0 such that

h/hj ≤ γ for j = 1, 2, · · · , Nh.

If d = 2(or 3), then we denote the set of the edges (resp., faces for d = 3) of Ki, 1 ≤ i ≤ Nh

by {e1, e2, · · · , eMh
} where ek has positive d− 1 dimensional Lebesque measure, ek ⊂ Ω for

1 ≤ k ≤ Ph, ek ⊂ ∂ΩD for Ph + 1 ≤ k ≤ Lh and ek ⊂ ∂ΩN for Lh + 1 ≤ k ≤ Mh. With
each edge (or face) ek = ∂Ki ∩ ∂Kj and i < j, we associate a unit normal vector nk to Ei.
For k ≥ Ph + 1, nk is taken to be the unit outward normal vector to ∂Ω.

For an s ≥ 0, 1 ≤ p ≤ ∞, and a domain K ⊂ Rd, we denote by W s,p(K) the Sobolev
space of order s equipped with the usual Sobolev norm ∥ · ∥W s,p(K). As usual we simply use
the notation Hs(K) instead of W s,2(K), ∥ · ∥s instead of ∥ · ∥W s,2(Ω), and ∥ · ∥K instead of
∥ · ∥Lp(K) if p = 2. And we also define the usual norm and seminorm on Hs(K) denoted by
∥ · ∥s,K and | · |s,K , respectively. We denote (·, ·) for the usual inner product of two functions.

Now for an s ≥ 0 and a given subdivision Ωh, let

Hs(Ωh) = {v ∈ L2(Ω) | v|Ki ∈ Hs(Ki), i = 1, 2, · · · , Nh}.

For a v ∈ Hs(Ωh) with s >
1

2
, we define the average function {v} and the jump function [v]

such that

{v} =
1

2
(v|Ki)|ek +

1

2
(v|Kj )|ek , ∀x ∈ ek, 1 ≤ k ≤ Ph,

[v] = (v|Ki)|ek − (v|Kj )|ek , ∀x ∈ ek, 1 ≤ k ≤ Ph,
(2.2)
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where ek = ∂Ki ∩ ∂Kj with i < j. If ek ∈ ∂Ω ∩Ki, then

{v} = v|Ki , ∀x ∈ ek, Ph + 1 ≤ k ≤Mh,

[v] = v|Ki , ∀x ∈ ek, Ph + 1 ≤ k ≤Mh.

We define the following broken norms on Hs(Ωh)

|||v|||20 =
Nh∑
i=1

∥v∥20,Ki
,

|||v|||21 =
Nh∑
i=1

∥v∥21,Ki
+

Lh∑
k=1

h∥{∇v · nk}∥2ek + Jσ(v, v),

(2.3)

where

Jσ(v, w) =

Lh∑
k=1

σh−1

∫
ek

[v][w]ds (2.4)

is an interior penalty term and σ is a positive constant.

3. APPROXIMATION PROPERTIES AND AN AUXILIARY PROJECTION

For a positive integer r, we construct the following finite element spaces

Dr(Ωh) = {v ∈ L2(Ω) | v|Ki ∈ Pr(Ki), i = 1, 2, · · · , Nh} (3.1)

where Pr(Ki) denotes the set of polynomials of total degree less than or equal to r on Ki.
Now we state the following approximation properties and trace inequalities whose proofs

are provided in [1,2]. Hereafter C denotes a positive generic constant depending on u, Ω, γ
and ρ but independent of h and ∆t defined in Section 4 and any two Cs in different places
don’t need to be equal.

Lemma 3.1. Let Kj ∈ Ωh and v ∈ Hs(Kj). Then there exist a positive constant C depending
on s, γ, and ρ but independent of v, r and h and a sequence {zhr }r≥1 ∈ Pr(Kj) such that for
any 0 ≤ q ≤ s and 1 ≤ p ≤ ∞

∥v − zhr ∥W q,p(Kj) ≤ Chµ−qj ∥v∥W s,p(Kj), s ≥ 0,

∥v − zhr ∥ej ≤ Ch
µ− 1

2
j ∥v∥s,Kj , s >

1

2
,

∥v − zhr ∥1,ej ≤ Ch
µ− 3

2
j ∥v∥s,Kj , s >

3

2
,

(3.2)

where µ = min(r + 1, s) and ej is an edge or a face of Kj .
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Lemma 3.2. For each Kj ∈ Ωh, there exists a positive constant C depending only on γ and ρ
such that the following trace inequalities hold:

∥v∥2ej ≤ C

(
1

hj
|v|20,Kj

+ hj |v|21,Kj

)
, ∀v ∈ H1(Kj),∥∥∥∥ ∂v∂nj

∥∥∥∥2
ej

≤ C

(
1

hj
|v|21,Kj

+ hj |v|22,Kj

)
, ∀v ∈ H2(Kj),

(3.3)

where ej is an edge or a face of Kj and nj is the unit outward normal vector to Kj .

Now we define the bilinear mapping A(u : ·, ·) on Hs(Ωh)×Hs(Ωh) as follows:

A(u : v, w) = (a(x, u)∇v,∇w)−
Lh∑
k=1

∫
ek

{a(x, u)∇v · nk}[w]dx

−
Ph∑
k=1

∫
ek

{a(x, u)∇w · nk}[v]dx+ Jσ(v, w).

(3.4)

Then the weak formulation of the problem (2.1) is given as follows:

(ut, v) +A(u : u, v) = (f(x, t, u)), v) + l(v), ∀ v ∈ Hs(Ωh),

l(v) =

Mh∑
k=Lh+1

(gN , [v])ek +

Lh∑
k=Ph+1

(gD, σh
−1[v])ek , ∀ v ∈ Hs(Ωh).

(3.5)

For a given λ > 0, we define the bilinear formAλ(u : ·, ·) onHs(Ωh)×Hs(Ωh) as follows:

Aλ(u : v, w) = A(u : v, w) + λ(v, w). (3.6)

Lemma 3.3. For a given λ > 0, there exists a constant C > 0, independent of u, such that

|Aλ(u : v, w)| ≤ C|||v|||1|||w|||1, ∀v, w ∈ Hs(Ωh). (3.7)
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Proof. Let v, w ∈ Hs(Ωh). Then we have

|Aλ(u : v, w)| ≤
Nh∑
i=1

(a(x, u)∇v,∇w) +
Lh∑
k=1

∫
ek

|{a(x, u)∇v · nk}[w]|dx

+

Ph∑
k=1

∫
ek

|{a(x, u)∇w · nk}[v]|dx+ Jσ(v, w) + λ(v, w)

≤a∗
Nh∑
i=1

∥∇v∥Ki∥∇w∥Ki

+ a∗
( Lh∑
k=1

σ

h
∥[w]∥2ek

) 1
2
( Lh∑
k=1

h

σ
∥{∇v · nk}∥2ek

) 1
2

+ a∗
( Ph∑
k=1

h

σ
∥{∇w · nk}∥2ek

) 1
2
( Ph∑
k=1

σ

h
∥[v]∥2ek

) 1
2

+

( Lh∑
k=1

σh−1∥[v]∥2ek

) 1
2
( Lh∑
k=1

σh−1∥[w]∥2ek

) 1
2

+ λ(v, w)

≤C|||v|||1|||w|||1.

This completes the proof. �

Lemma 3.4. For a given λ > 0, there exists a constant c̃ > 0, independent of u, such that

Aλ(u : v, v) ≥ c̃|||v|||21, ∀v ∈ Dr(Ωh). (3.8)

Proof. Let v ∈ Dr(Ωh). Then we have

Aλ(u : v, v) =

Nh∑
i=1

(a(x, u)∇v,∇v)Ki −
Lh∑
k=1

∫
ek

{a(x, u)∇v · nk}[v]dx

−
Ph∑
k=1

∫
ek

{a(x, u)∇v · nk}[v]dx+ Jσ(v, v) + λ(v, v)

≥a∗
Nh∑
i=1

∥∇v∥2Ki
− 2

Lh∑
k=1

(
a∗

E
h∥{∇v · nk}∥2ek + Eh−1∥[v]∥2ek)

+

Lh∑
k=1

σh−1∥[v]∥2ek + λ∥v∥2.
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By Lemma 3.2, the following estimation can be obtained

Aλ(u : v, v) ≥(a∗ −
a∗C

E
)

Nh∑
i=1

∥∇v∥2Ki
+

Lh∑
k=1

(σ − 2E)h−1∥[v]∥2ek + λ∥v∥2

≥C
( Nh∑
i=1

∥∇v∥2Ki
+

Lh∑
k=1

h∥{∇v · nk}∥2ek

)
+ C

Lh∑
k=1

h−1∥[v]∥2ek + λ∥v∥2

≥c̃|||v|||21,
for sufficiently large E and σ > 2E . This completes the proof. �

Now for a given u, we construct a projection ũ ∈ Dr(Ωh) satisfying

Aλ(u : u− ũ, v) = 0, ∀v ∈ Dr(Ωh), (3.9)

Then, by Lemma 3.3 and Lemma 3.4, ũ is obviously well-defined. We denote

η(x, t) = u(x, t)− ũ(x, t), θ(x, t) = û(x, t)− ũ(x, t),

where û(x, t) is the approximation of u(x, t) satisfying the approximation properties of Lemma
3.1.

Lemma 3.5. If µ ≥ d
2 + 1 and u ∈ Hs(Ω), then there exist constants C > 0 and C∗ > 0 such

that

|||θ|||1 ≤ Chµ−1∥u∥s, ∥θ∥L∞ ≤ C∗

3
,

where µ = min(r + 1, s).

Proof. By Lemma 3.4, we have

c̃|||θ|||21 ≤ Aλ(u : θ, θ) = Aλ(u : θ − η, θ)

= Aλ(u : û− u, θ) ≤ C|||û− u|||1|||θ|||1
and hence |||θ|||1 ≤ C|||û− u|||1. By Lemma 3.1 we get

|||θ|||1 ≤C(
Nh∑
i=1

∥û− u∥21,Ki
+

Lh∑
k=1

h∥{∇(û− u) · nk}∥2ek +
Lh∑
k=1

h−1∥[û− u]2∥ek)
1
2

≤C(hµ−1 + h
1
2hµ−

3
2 + h−

1
2hµ−

1
2 )∥u∥s ≤ Chµ−1∥u∥s.

If µ ≥ d
2 + 1, then by the inverse inequality

∥θ∥L∞ ≤Ch−
d
2hµ−1∥u∥s ≤

C∗

3

for some constant C∗. This completes the proof. �

Now we state the following approximation results for η and ηt whose proofs can be found
in [9].
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Theorem 3.1. If u ∈ Hs(Ω) and ut ∈ Hs(Ω), then there exists a constant C, independent of
h, such that
(i) ∥η∥+ h|||η|||1 ≤ Chµ∥u∥s;
(ii) ∥ηt∥+ h|||ηt|||1 ≤ Chµ(∥u∥s + ∥ut∥s),
where µ = min(r + 1, s).

And by following the ideas in the proofs of Theorem 3.1, we obtain the following results for
ηtt and ηttt.

Theorem 3.2. If u ∈ Hs(Ω), ut ∈ Hs(Ω), utt ∈ Hs(Ω) and uttt ∈ Hs(Ω), then there exists
a constant C, independent of h, such that
(i) ∥ηtt∥+ h|||ηtt|||1 ≤ Chµ{∥u∥s + ∥ut∥s + ∥utt∥s};
(ii) ∥ηttt∥+ h|||ηttt|||1 ≤ Chµ{∥u∥s + ∥ut∥s + ∥utt∥s + ∥uttt∥s},
where µ = min(r + 1, s).

4. THE OPTIMAL ℓ∞(L2) ERROR ESTIMATES OF FULLY DISCRETE APPROXIMATIONS

Now using Crank-Nicolson method, we construct the fully discrete discontinuous Galerkin
approximations for nonlinear parabolic problems and prove the optimal convergence in L2

normed space. For a positive integer N , let ∆t =
T

N
, tj = j(∆t) for j = 0, 1, · · · , N , and

tj+
1
2 =

1

2
(tj + tj+1) for j = 0, 1, · · · , N − 1. For a function g(x, t) defined on Ω× [0, T ], let

gj = g(tj) = g(x, tj) for j = 0, 1, · · · , N and ∂tgj =
gj+1 − gj

∆t
and gj+

1
2 =

1

2
(gj + gj+1)

for j = 0, 1, · · · , N − 1.
Then the extrapolated Crank-Nicolson discontinuous Galerkin approximation {U j}Nj=0 ⊂

Dr(Ωh) is defined as follows: for j = 1, 2, · · · , N − 1

(∂tU
j , v) +A(EU j : U j+

1
2 , v) = (f(x, tj+

1
2 , EU j), v) + l(v), ∀v ∈ Dr(Ωh) (4.1)

and

(∂tU
0, v) +A(U0 : U

1
2 , v) =

(
f(x, t

1
2 , U

1
2 ), v

)
+ l(v), ∀v ∈ Dr(Ωh),

U0(x) = ũ(x, 0) = ũ0(x),

(4.2)

where EU j = 3
2U

j − 1
2U

j−1. To prove the optimal convergence of uj − U j in L2 normed
space, we denote

ξj = ũj − U j , j = 0, 1, · · · , N.
By simple computations and the applications of Theorem 3.2, we obtain the following Lemma
4.1 and Lemma 4.2.
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Lemma 4.1. If u ∈ L∞(Hs(Ω)), ut ∈ L∞(Hs(Ω)), utt ∈ L∞(Hs(Ω)) and uttt ∈ L∞(Hs(Ω))
and if

ρj+
1
2 =

∂tũ
j − ũt(t

j+ 1
2 )

∆t
,

then there exists a constant C, independent of h and ∆t, such that

|||ρj+
1
2 |||0 ≤ C∆t(∥u∥L∞(Hs) + ∥ut∥L∞(Hs) + ∥utt∥L∞(Hs) + ∥uttt∥L∞(Hs));

|||ρj+
1
2 |||1 ≤ C∆t(∥u∥L∞(Hs) + ∥ut∥L∞(Hs) + ∥utt∥L∞(Hs) + ∥uttt∥L∞(Hs)).

Lemma 4.2. If u ∈ L∞(Hs(Ω)), ut ∈ L∞(Hs(Ω)) and utt ∈ L∞(Hs(Ω)) and if rj+
1
2 =

ũ(tj+
1
2 )− ũj+

1
2 , then there exists a constant C, independent of h and ∆t, such that

|||rj+
1
2 |||0 ≤ C(∆t)2(∥u∥L∞(Hs) + ∥ut∥L∞(Hs) + ∥utt∥L∞(Hs));

|||rj+
1
2 |||1 ≤ C(∆t)2(∥u∥L∞(Hs) + ∥ut∥L∞(Hs) + ∥utt∥L∞(Hs)).

Lemma 4.3. If u ∈ L∞(Hs(Ω)), ut ∈ L∞(Hs(Ω)) and utt ∈ L∞(Hs(Ω)) and if µ > d
2 + 1

and φj+
1
2 = ũ(tj+

1
2 )− Eũ(tj), then the following statements hold:

(i) ∥φj+
1
2 ∥ ≤ C(∆t)2;

(ii) ∥∇ũj∥∞ is bounded.

Proof. By the simple calculation, we obtain

∥φj+
1
2 ∥ =∥ũ(tj+

1
2 )− 3

2
ũ(tj) +

1

2
ũ(tj−1)∥

≤∥ũ(tj) + 1

2
∆tũt(t

j)− 3

2
ũ(tj) +

1

2
(ũ(tj)−∆tũt(t

j))∥+ C(∆t)2

≤C(∆t)2.
Therefore the bound in (i) holds. And we get the statement (ii) in the following way

∥∇ũj∥∞ ≤ ∥∇ũj −∇uj∥∞ + ∥∇uj∥∞
≤ ∥∇ũj −∇ûj∥∞ + ∥∇ûj −∇uj∥∞ + ∥∇uj∥∞

≤ Ch−
d
2 ∥∇θj∥+ hµ−1− d

2 ∥u∥+ ∥∇uj∥∞

≤ Chµ−1− d
2 ∥u∥+ ∥∇uj∥∞ ≤ C

if µ > d
2 + 1. This completes the proof. �

Theorem 4.1. For 0 < λ < 1, if u ∈ L∞(Hs(Ω)), ut ∈ L∞(Hs(Ω)), utt ∈ L∞(Hs(Ω)) and
uttt ∈ L∞(Hs(Ω)), then there exists a constant C > 0, independent on h and ∆t, such that

|||ξ1|||0 ≤ C(hµ + (∆t)2),

|||e1|||0 ≤ C(hµ + (∆t)2),

where µ = min(r + 1, s) and µ ≥ d
2 + 1.
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Proof. The proof of Theorem 4.1 is very similar to one of Theorem 4.2 which will be given
later, in detail. So we will skip the proof of Theorem 4.1. This completes the proof. �
Theorem 4.2. Suppose that the assumptions of Lemma 4.1 and 4.2 hold and that

|f(x, t, u)− f(x, t, α)| ≤ C(C∗, u)|u− α|,
|a(x, u)− a(x, α)| ≤ C(C∗, u)|u− α|

for |u − α| < C∗. Then for 0 < λ < 1, there exists a constant C > 0, independent on h and
∆t, such that for j = 0, 1, · · · , N

|||u(tj)− U j |||0 ≤ C(hµ + (∆t)2). (4.3)

hold where µ = min(r + 1, s) and µ ≥ d
2 + 1.

Proof. To prove this theorem, we will prove, by mathematical induction, that

|||ξn|||0 ≤ C(hµ + (∆t)2), n = 0, 1, · · · , N.
By (4.2) and Theorem 4.1, |||ξ0|||0 ≤ Chµ and |||ξ1|||0 ≤ C(hµ + (∆t)2), respectively. Now we
suppose that for all j, 0 ≤ j ≤ N − 1 we have

|||ξj |||0 ≤ C(hµ + (∆t)2). (4.4)

From (4.1) and (3.5), we have

(ut(t
j+ 1

2 )− ∂tU
j , v) +Aλ(u(t

j+ 1
2 ) : u(tj+

1
2 ), v)−Aλ(EU

j : U j+
1
2 , v)

= (f(x, tj+
1
2 , u(tj+

1
2 ))− f(x, tj+

1
2 , EU j), v) + λ(u(tj+

1
2 )− U j+

1
2 , v).

(4.5)

By the notations of η and ξ, we get

ut(t
j+ 1

2 )− ∂tU
j = ut(t

j+ 1
2 )− ∂tũ

j + ∂tũ
j − ∂tU

j = ηt(t
j+ 1

2 )−∆tρj+
1
2 + ∂tξ

j . (4.6)

From the definition of η and ξ, we obtain

Aλ(u(t
j+ 1

2 ) : u(tj+
1
2 ), v)−Aλ(EU

j : U j+
1
2 , v)

= Aλ(EU
j : ξj+

1
2 , v) +Aλ(u(t

j+ 1
2 ) : η(tj+

1
2 ), v)

+Aλ(u(t
j+ 1

2 ) : ũ(tj+
1
2 )− ũj+

1
2 , v)

+Aλ(u(t
j+ 1

2 ) : ũj+
1
2 , v)−Aλ(EU

j : ũj+
1
2 , v).

(4.7)

Substituting (4.6) and (4.7) in (4.5) and choosing v = ξj+
1
2 in (4.5), we have

(∂tξ
j , ξj+

1
2 ) +Aλ(EU

j : ξj+
1
2 , ξj+

1
2 )

= − (ηt(t
j+ 1

2 )−∆tρj+
1
2 , ξj+

1
2 )−Aλ(u(t

j+ 1
2 ) : η(tj+

1
2 ), ξj+

1
2 )

−Aλ(u(t
j+ 1

2 ) : rj+
1
2 , ξj+

1
2 )−Aλ(u(t

j+ 1
2 ) : ũj+

1
2 , ξj+

1
2 )

+Aλ(EU
j : ũj+

1
2 , ξj+

1
2 ) + λ(u(tj+ 1

2
)− U j+

1
2 , ξj+

1
2 )

+ (f(x, tj+
1
2 , u(tj+

1
2 ))− f(x, tj+

1
2 , EU j), ξj+

1
2 ).

(4.8)
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Notice that

(∂tξ
j , ξj+

1
2 ) =

1

2∆t
(|||ξj+1|||20 − |||ξj |||20). (4.9)

Applying (4.9) in (4.8) and using Lemma 3.4, we obtain

1

2∆t
(|||ξj+1|||20 − |||ξj |||20) + c̃|||ξj+

1
2 |||21

≤ − (ηt(t
j+ 1

2 )−∆tρj+
1
2 , ξj+

1
2 )

+ λ(u(tj+
1
2 )− U j+

1
2 , ξj+

1
2 )

−Aλ(u(t
j+ 1

2 ) : rj+
1
2 , ξj+

1
2 )

−
(
Aλ(u(t

j+ 1
2 ) : ũj+

1
2 , ξj+

1
2 )−Aλ(EU

j : ũj+
1
2 , ξj+

1
2 )

)
+

(
f(x, tj+

1
2 , uj+

1
2 )− f(x, tj+

1
2 , EU j), ξj+

1
2

)
=

5∑
i=1

Ii.

(4.10)

By applying Lemma 4.1 there exists a constant C > 0 such that

|I1| ≤ (|||ηt(tj+
1
2 )|||0 + |||∆tρj+

1
2 |||0)|||ξj+

1
2 |||0

≤ C(|||ηt(tj+
1
2 )|||20 + (∆t)2|||ρj+

1
2 |||20 + |||ξj+1|||20 + |||ξj |||20)

≤ C(h2µ + (∆t)4) + |||ξj+1|||20 + |||ξj |||20).

For sufficiently small ϵ > 0 we obtain the following estimates of I2 and I3:

|I2| ≤ λ(|||η(tj+
1
2 )|||0 + |||rj+

1
2 |||0 + |||ξj+

1
2 |||0)|||ξj+

1
2 |||0

≤ C(h2µ + (∆t)4 + |||ξj |||20 + |||ξj+1|||20),

|I3| ≤ C|||rj+
1
2 |||1|||ξj+

1
2 |||1 ≤ C(∆t)4 + ε|||ξj+

1
2 |||21.

Now to calculate the bound for I4, we split it into 3 terms as follows:

I4 =

(
(a(x, u(tj+

1
2 ))− a(x,EU j))∇ũj+

1
2 ,∇ξj+

1
2

)
−

Lh∑
k=1

∫
ek

{(a(x, u(tj+
1
2 ))− a(x,EU j))∇ũj+

1
2 · nk}[ξj+

1
2 ]

−
Ph∑
k=1

∫
ek

{(a(x, u(tj+
1
2 ))− a(x,EU j))∇ξj+

1
2 · nk}[ũj+

1
2 ] =

3∑
i=1

I4i.
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Note that by Taylor’s expansion, Lemma 3.1, Lemma 3.5 and the assumption (4.4), we get

∥u(tj+
1
2 )− EU j∥L∞ ≤∥u(tj+

1
2 )− Euj∥L∞ + ∥Euj − Eûj∥L∞

+ ∥Eûj − Eũj∥L∞ + ∥Eũj − EU j∥L∞

≤C((∆t)2 + hµ) +
C∗

3
+
C∗

3
≤ C∗

(4.11)

for sufficiently small h and ∆t. By (4.11) we obtain

|a(x, u(tj+
1
2 ))− a(x,EU j)| ≤ C(C∗)|u(tj+

1
2 )− EU j |

and by Lemma 4.3

I41 =

∣∣∣∣((a(x, u(tj+ 1
2 ))− a(x,EU j))∇ũj+

1
2 ,∇ξj+

1
2

)∣∣∣∣
≤ C∥∇ũj+

1
2 ∥L∞

(
∥η(tj+

1
2 )∥+∆t2 + |||ξj |||0 + |||ξj−1|||0

)
|||∇ξj+

1
2 |||0

≤ C(h2µ + (∆t)4 + |||ξj |||20 + |||ξj−1|||20) + ϵ|||ξj+
1
2 |||21.

Similarly there exists a constant C > 0 such that

|I42| ≤
Lh∑
k=1

C∥∇ũj+
1
2 ∥L∞(ek)(∥η(t

j+ 1
2 )∥ek + ∥φj+

1
2 ∥ek + ∥ξj∥ek + ∥ξj−1∥ek)∥[ξ

j+ 1
2 ]∥ek

≤C
Nh∑
i=1

∥∇ũj+
1
2 ∥L∞(Ki)(h

− 1
2 ∥η(tj+

1
2 )∥Ki + h

1
2 ∥∇η(tj+

1
2 )∥Ki + h−

1
2 ∥φj+

1
2 ∥Ki

+ h−
1
2 ∥ξj∥Ki + h−

1
2 ∥ξj−1∥Ki)h

1
2 |||ξj+

1
2 |||1

≤C(|||η(tj+
1
2 )|||20 + h2|||∇η(tj+

1
2 )|||20 + (∆t)4 + |||ξj |||20 + |||ξj−1|||20) + ϵ|||ξj+

1
2 |||21

≤C(h2µ + (∆t)4 + |||ξj |||20 + |||ξj−1|||20) + ϵ|||ξj+
1
2 |||21.

Since [u] = 0 on ek ∈ Ph, we have

|I43| ≤C
Ph∑
k=1

∥∇ξj+
1
2 ∥L∞(ek)(∥η(t

j+ 1
2 )∥ek + ∥φj+

1
2 ∥ek + ∥ξj∥ek + ∥ξj−1∥ek)∥[η

j+ 1
2 ]∥ek

≤C
Nh∑
i=1

(∥∇ξj+
1
2 ∥L∞(Ki))h

− 1
2 (∥η(tj+

1
2 )∥Ki + h∥∇η(tj+

1
2 )∥Ki + ∥φj+

1
2 ∥Ki

+ ∥ξj∥Ki + ∥ξj−1∥Ki)h
− 1

2 (∥ηj+
1
2 ∥Ki + h∥∇ηj+

1
2 ∥Ki)

≤C
Nh∑
i=1

(∥∇ξj+
1
2 ∥Kih

− d
2 )h−1(hµ + (∆t)2 + ∥ξj∥Ki + ∥ξj−1∥Ki)h

µ.
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Since µ ≥ d
2 + 1, we obtain

|I43| ≤ C(h2µ + (∆t)4 + |||ξj |||20 + |||ξj−1|||20) + ϵ|||ξj+
1
2 |||21.

From the bounds of |I4i|, 1 ≤ i ≤ 3, we get

|I4| ≤ C(h2µ + (∆t)4 + |||ξj |||20 + |||ξj−1|||20) + 3ϵ|||ξj+
1
2 |||21.

Now we compute the bound of I5

|I5| = |(f(x, tj+
1
2 , u(tj+

1
2 ))− f(x, tj+

1
2 , EU j), ξj+

1
2 )|

≤ C|||u(tj+
1
2 )−EU j |||20 + |||ξj+

1
2 |||20

≤ C(|||u(tj+
1
2 )− ũ(tj+

1
2 )|||20 + |||ũ(tj+

1
2 )− E(ũj)|||20 + |||Eξj |||20)

+ C(|||ξj+1|||20 + |||ξj |||20)
≤ C((∆t)4 + h2µ + |||ξj+1|||20 + |||ξj |||20 + |||ξj−1|||20).

Substituting the bounds of Ii, 1 ≤ i ≤ 5, into (4.10), we get
1

2∆t
(|||ξj+1|||20 − |||ξj |||20) +

c̃

2
|||ξj+

1
2 |||21

≤ C
(
h2µ + (∆t)4 + |||ξj+1|||20 + |||ξj |||20 + |||ξj−1|||20

)
,

(4.12)

for sufficiently small ϵ. If we sum both sides of (4.12) from j = 1 to N − 1, then we obtain

|||ξN |||20 − |||ξ1|||20 ≤ C

{
(∆t)

N−1∑
j=1

(
h2µ + (∆t)4

)
+ (∆t)

N∑
j=0

|||ξj |||20
}
,

which implies

|||ξN |||20 ≤ |||ξ1|||20 + C(∆t)
N−1∑
j=1

(
h2µ + (∆t)4

)
+ C(∆t)

N∑
j=0

|||ξj |||20,

where ∆t is sufficiently small. By applying the discrete version of Gronwall’s inequality, we
have

|||ξN |||20 ≤ C

(
|||ξ1|||20 +∆t

N−1∑
j=1

(
h2µ + (∆t)4

))
.

Therefore we prove by mathematical induction that

|||ξn|||0 ≤ C(hµ + (∆t)2), n = 0, 1, · · · , N,
which implies that

|||e|||ℓ∞(L2) := max
0≤n≤N

|||en|||0 ≤ C(hµ + (∆t)2),

that is, we obtain the optimal ℓ∞(L2) error estimation of the fully discrete solutions. This
completes the proof. �
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