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TWO-SCALE PRODUCT APPROXIMATION FOR

SEMILINEAR PARABOLIC PROBLEMS IN

MIXED METHODS

Dongho Kim, Eun-Jae Park, and Boyoon Seo

Abstract. We propose and analyze two-scale product approximation for
semilinear heat equations in the mixed finite element method. In order to
efficiently resolve nonlinear algebraic equations resulting from the mixed
method for semilinear parabolic problems, we treat the nonlinear terms
using some interpolation operator and exploit a two-scale grid algorithm.
With this scheme, the nonlinear problem is reduced to a linear problem
on a fine scale mesh without losing overall accuracy of the final system.
We derive optimal order L∞((0, T ];L2(Ω))-error estimates for the rele-
vant variables. Numerical results are presented to support the theory
developed in this paper.

1. Introduction

In order to efficiently compute a number of integrals involving the coeffi-
cients or nonlinear terms arising in the variational formulation of the differential
equations, one uses approximation of the coefficients, e.g., the interpolation, the
projection or the quadrature formulas of the coefficients. The use of product ap-
proximation of the coefficients in Galerkin finite element methods for nonlinear
problems has been analyzed by several authors (e.g., [8, 28, 7, 12, 17]). They
applied the interpolation operator to the nonlinear coefficients and obtained
error estimates of optimal convergence order with much less computational
effort.

Chen and Douglas [5] analyzed the approximation of coefficients in mixed
finite element method for nonlinear parabolic problems in the continuous-in-
time setting. There, the authors suggested two examples for the approximation
of coefficients, namely, projection of the nonlinear coefficients into finite element
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spaces and evaluation of the integral involving nonlinear term by a quadrature
rule. However, in computing the discrete solution for the semilinear parabolic
model problem under consideration, their schemes can be complicated from the
implementation point of view.

In our paper, we propose elementwise interpolation of the nonlinear coeffi-
cients in mixed finite element methods for semilinear parabolic equations. This
leads to great computational savings in obtaining matrix systems at every time
step. Since the reduced system obtained by interpolation of the nonlinear term
is yet nonlinear, it still requires an efficient solver for the resulting nonlinear al-
gebraic equations on fine-scale mesh. For this, we introduce a two-scale method
based on finite element spaces with grids of two different scales.

The two-scale method was first introduced by Xu [31, 32] with the Galerkin
method for semilinear and nonlinear elliptic boundary value problems. A new
discretization technique, based on finite element spaces defined on two scales
of different sizes, is presented. The author suggests an efficient algorithm and
gives an error analysis. In the linear but not symmetric positive-definite (SPD)
case, the idea of two scales is used to reduce the problem to an SPD. This is
done by solving a non-SPD problem on a much smaller space. For nonlinear
problems, the standard finite element method is used on the coarsest mesh.
This solution is used as a starting value for the iterative solution on the finer
mesh. Optimal accuracy is obtained even if the ratio of the coarse to the fine
mesh is large.

Since the pioneering work of Xu, the two-scale method was further inves-
tigated by many authors. For instance, Bi and Ginting [1] have applied this
method to finite volume element method for linear and nonlinear elliptic prob-
lems. Layton and Lenferink [18] have also studied this method for Navier-Stokes
equations. Recently, Jin, Shu and Xu [16] have applied the two-grid idea to
decouple systems of partial differential equations.

On the other hand, mixed finite element methods have been successfully
applied to several areas of interest, in particular, fluid flows in porous media
[14, 27, 29, 22]. Linear and nonlinear second order elliptic problems are studied
in [25, 11, 3, 26, 23, 24, 19, 20]. Two-scale mixed methods for parabolic prob-
lems are studied in references [10, 30, 6]. In particular, Dawson and Wheeler
[10] have applied two-grid method combined with mixed finite element method
to parabolic problems with nonlinear diffusivity. There, the fully nonlinear sys-
tem is solved on a coarse scale of sizeH . The nonlinearities are expanded about
the coarse scale solution, and the resulting linear but nonsymmetric system is
solved on a finescale of size h. Error estimates are derived to demonstrate
O(∆t+ hk+1 +H2k+1) convergence with standard mixed finite element spaces
of order k. Later, Wu and Allen [30] have applied two-grid scheme to mixed
finite element method for reaction-diffusion equations with nonlinear reaction
and obtained the error bound O(∆t + hk+1 +H2k+2). But a gap is found in
the proof of Theorem 3.2 in the paper [30]. The proof requires L4(Ω) error
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estimate in order to bound quadratic terms arising from linearization. More-
over, the authors of the paper [6] essentially fixed this gap using the properties
of superconvergence. However, Lemma 4.1 in their paper should be modified
due to the use of the inverse estimate and Lemma 4.2 is valid under the space
and time mesh restriction ∆t · H−1 = O(1). Therefore, their main theorem
(Theorem 4.1) should be modified accordingly.

Aforementioned issues are incorporated into our paper. Moreover, from
the implementation point of view, our scheme is much simpler than that of
[6] mainly due to the elementwise interpolation of the nonlinear coefficients.
Consequently, we derive error estimates bounded by O(∆t + hk+1 + H2k+1)
for k ≥ 1 without losing overall accuracy of the final system on fine scale
mesh. Note that we show the error bound O(∆t+h+H2) for the lowest index
k = 0. In order to improve coarse scale convergence for higher k, we propose an
interpolation operator based on Gaussian points. Then, we demonstrate error
estimates O(∆t + hk+1 + H2k+2), k = 1, 2, using the interpolation operator
based on some Gaussian nodal points on triangular mesh.

Now, consider the following semilinear parabolic model problem:

(1)











ut − div(a(x)∇u) = f(u) in Ω× J,

u = 0 on ∂Ω× J,

u(·, 0) = u0 on Ω,

where Ω ⊂ R
2 is a convex planar domain with smooth boundary ∂Ω, J := (0, T ]

and 0 < β−1
0 ≤ a(x) ≤ α−1

0 .
Let V := L2(Ω) and M := H(div; Ω), where the space

H(div; Ω) := {σ ∈ [L2(Ω)]2 : divσ ∈ L2(Ω)}.

Let (·, ·) denote the L2(Ω)-inner product and given an integer m ≥ 0, Wm,p(Ω)
denote the usual Sobolev space provided the norm

‖v‖m,p :=







∑

|β|≤m

‖Dβv‖pp







1/p

and semi-norm

|v|m,p :=







∑

|β|=m

‖Dβv‖pp







1/p

.

When p = 2, we denote Wm,p(Ω) by Hm(Ω) and write ‖v‖m := ‖v‖m,2. If
m = 0 we usually write ‖v‖ := ‖v‖0. Furthermore, for finite element K we use
the notation ||v||m,p,K and |v|m,p,K .

We present the regularity assumptions which are sufficient to obtain required
estimates.
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(A1) The f(u) is a smooth function of u ∈ R, i.e., there exists a bound B1

such that

|f (i)| ≤ B1, i = 0, 1, 2, . . . .

(A2) If u is the solution of (1), there exists a constant B2 such that

‖u‖L2(J;Hk+1(Ω)) +
∥

∥

∥

∂u

∂t

∥

∥

∥

L2(J;Hk+1(Ω))
+
∥

∥

∥

∂2u

∂t2

∥

∥

∥

L2(J;L2(Ω))
≤ B2,

where
∥

∥w
∥

∥

L2(J;X)
:=
(

∫ T

0

‖w(·, t)‖2Xdt
)1/2

.

We note that under the hypotheses of the theorems to follow, our approx-
imations converge uniformly to u; thus (A1) actually needs hold only in a
neighborhood of the solution (c.f., [13]).

The rest of this paper is organized as follows. In Section 2, we describe
our two-scale schemes combined with interpolation of coefficients for mixed
finite element method. In Section 3, we derive L∞(J ;L2(Ω))-error estimates
for the scheme which show the optimal order of convergence on fine scale mesh.
Finally, in Section 4, we present numerical results which confirm the theory
developed in this paper.

2. Description of the methods

Let σ := −a(x)∇u and α := a(x)−1, then problem (1) has the following
variational form: find (u,σ) ∈ V ×M such that

(ασ, τ )− (u, divτ ) = 0, ∀τ ∈ M , ∀t ∈ J,(2)
(

∂u

∂t
, v

)

+ (divσ, v) = (f(u), v), ∀v ∈ V, ∀t ∈ J,(3)

u(·, 0) = u0, in Ω.

Let Th be a family of quasi-uniform partition of Ω into triangles or rectangles
of diameter not greater than h. Boundary finite elements are allowed to have
one curvilinear edge or side. Associated with Th, we take standard mixed finite
dimensional subspaces Mh ⊂ M and Vh ⊂ L2(Ω), for example, the Raviart-
Thomas space RTk of order k.

If we use the backward Euler scheme for discretization with respect to the
time variable it follows from (3) and (2) that for n = 1, . . . , N ,

(ασn, τ )− (un, divτ ) = 0, ∀τ ∈ M ,(4)
(

un − un−1

∆t
, v

)

+ (divσn, v) = (f(un), v) + (en, v), ∀v ∈ V,(5)

where ∆t is time step size, tn := n∆t, un(·) := u(·, tn), σn(·) := σ(·, tn), and
en := un−un−1

∆t − ∂un

∂t is the truncation error associated with the backward Euler
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difference approximation. The space-time fully discrete problem is defined as
follows: for n = 1, . . . , N , find (unh,σ

n
h) ∈ Vh ×Mh such that

(ασn
h, τ )− (unh, divτ ) = 0, ∀τ ∈ Mh,

(

unh − un−1
h

∆t
, v

)

+ (divσn
h, v) = (f(unh), v), ∀v ∈ Vh.

The following estimates are well known results (c.f., [21]): for each time level n,
there exists positive constant C, independent of h but dependent on function
u such that

‖un − unh‖ ≤ C(∆t+ hr), 1 ≤ r ≤ k + 1, k ≥ 0,(6)

‖σn − σn
h‖ ≤ C(∆t+ hr), 1 ≤ r ≤ k + 1, k ≥ 0.(7)

Now, we define an operator Qh to interpolate the nonlinear term f(uh).
For any element-wise continuous function v, i.e., v

∣

∣

K
∈ C(K) for each element

K ∈ Th, let Qh be the operator which maps f(v) to Qhf(v) ∈ Vh defined by

Qhf(v)(ξ) := f(v(ξ))

at each nodal point ξ. Then we have well-known approximation property of
Qh:

‖f(v)−Qhf(v)‖0,2,k ≤ Chk+1 |f(v)|k+1,2,K .(8)

For example, if f(uh) = u2h and uh =
∑Nh

i=1 ciφi, where φi ∈ Vh is the basis
satisfying φi(ξj) = δij , where Nh is the number of interior nodes, δij is the
symbol of Kronecker delta, for a nodal point ξj , then since Qhf(uh)(ξj) =

uh(ξj)
2 = c2j we have Qhf(uh) =

∑Nh

i=1 c
2
iφi. Generally,

Qhf(uh) =

Nh
∑

i=1

f(ci)φi

for any function f . Note that if Vh is the space of the lowest order, i.e., the
space of order k = 0, then Qhf(vh) = f(vh) for any vh ∈ Vh. So from now on
we consider k ≥ 1 only. The main algorithm of this paper is as follows:

Algorithm :

• Step 1. For n = 1, . . . , N , on the coarse grid TH , find (ûnH , σ̂
n
H) ∈

VH ×MH satisfying the original nonlinear system:

(ασ̂n
H , τ )− (ûnH , divτ ) = 0, ∀τ ∈ MH ,(9)

(

ûnH − ûn−1
H

∆t
, v

)

+ (divσ̂n
H , v) = (QHf(û

n
H), v), ∀v ∈ VH .(10)

• Step 2. For n = 1, . . . , N , on the fine grid Th, find (ûnh, σ̂
n
h) ∈ Vh×Mh

satisfying the linearized system:

(11) (ασ̂n
h ,w)− (ûnh, divw) = 0, ∀τ ∈ Mh,
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(12)

(

ûnh − ûn−1
h

∆t
, v

)

+(divσ̂n
h, v) = (f(ûnH)+ fu(û

n
H)(ûnh − ûnH), v), ∀v ∈ Vh.

3. Error analysis

We define the “elliptic projection” of the solution (un,σn) of the problem
(4)-(5) as the function (ũnh, σ̃

n
h) ∈ Vh ×Mh at each time level n that satisfies

the following equations:

(ασ̃n
h, τ )− (ũnh, divτ ) = 0, ∀τ ∈ Mh,(13)

(divσ̃n
h, v) =

(

f(un)− ∂un

∂t
, v
)

, ∀v ∈ Vh.(14)

The following estimates are well known results (see [4]): for each time level n,
1 ≤ p <∞,

‖un − ũnh‖0,p ≤ Chr‖un‖r,p, 2 ≤ r ≤ k + 1,(15)

‖σn − σ̃n
h‖0,p ≤ Chr‖σn‖r,p, 1 ≤ r ≤ k + 1,(16)

‖div(σn − σ̃n
h)‖0,p ≤ Chr‖divσn‖r,p, 1 ≤ r ≤ k + 1.(17)

First, we consider Step 1 (coarse grid). Let εn := un− ûnH and θn := σn−σ̂
n
H .

Subtracting (9)-(10) from (4)-(5) respectively, we arrive at the following error
equations:

(αθn, τ )− (εn, divτ ) = 0, ∀τ ∈ MH ,(18)
(

εn−εn−1

∆t
, v

)

+ (divθn, v)= (en, v) + (f(un)−QHf(û
n
H), v), ∀v ∈ VH .(19)

For η(·, tn) := ηn := un−ũnH , ξnH := ũnH−ûnH , τn := σn−σ̃n
H , and ρn

H := σ̃n
H−

σ̂
n
H , we have εn = ηn+ξnH and θn = τn+ρn

H . If we insert these decompositions
into (18) and (19), then we get from (13) and (14), for n = 1, . . . , N ,

(αρn
H , τ )− (ξnH , divτ ) =0, ∀τ ∈ MH ,(20)

(

ξnH − ξn−1
H

∆t
, v

)

+ (divρn
H , v) =(en, v) + (f(un)−QHf(û

n
H), v)(21)

−
(

ηn − ηn−1

∆t
, v

)

, ∀v ∈ VH .

We introduce three lemmas before considering main theorems.

Lemma 3.1. If u is the solution of (1), then for en = un−un−1

∆t − ∂un

∂t ,

‖en‖2 =
∆t

3

∫ n∆t

(n−1)∆t

∥

∥

∥

∂2u

∂t2

∥

∥

∥

2

dt.

Proof. By the Cauchy-Schwarz inequality, we see that

‖en‖2 =
∥

∥

∥

∂un

∂t
− un − un−1

∆t

∥

∥

∥

2

=
∥

∥

∥

1

∆t

∫ n∆t

(n−1)∆t

[

t− (n− 1)∆t
]∂2u

∂t2
dt
∥

∥

∥

2

.
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So,

‖en‖2 ≤ 1

∆t2

∥

∥

∥

∥

∥

√

∫ n∆t

(n−1)∆t

[

t− (n− 1)∆t
]2
dt

√

∫ n∆t

(n−1)∆t

(∂2u

∂t2

)2

dt

∥

∥

∥

∥

∥

2

=
∆t

3

∫

Ω

∫ n∆t

(n−1)∆t

(∂2u

∂t2

)2

dtdx

=
∆t

3

∫ n∆t

(n−1)∆t

∥

∥

∥

∂2u

∂t2

∥

∥

∥

2

dt.
�

Lemma 3.2. If u is the solution of (4)-(5), ũnH is the solution of (13)-(14)
on the coarse grid TH , and η(·, tn) := ηn := un − ũnH , then for any ǫ > 0 and

for k ≥ 1,

|(ηn − ηn−1, v)| ≤ CH2k+2

2ǫ2

∫ n∆t

(n−1)∆t

∥

∥

∥

∂u

∂t

∥

∥

∥

2

k+1
dt+

∆tǫ2

2
‖v‖2, ∀v ∈ VH .

Proof. By the Cauchy-Schwarz inequality,

∣

∣(ηn − ηn−1, v)| =
∣

∣

∣

(

∫ n∆t

(n−1)∆t

∂η

∂t
dt, v

)∣

∣

∣

≤
(
√

∫ n∆t

(n−1)∆t

dt

√

∫ n∆t

(n−1)∆t

(∂η

∂t

)2

dt, |v|
)

=

(
√

∫ n∆t

(n−1)∆t

(∂η

∂t

)2

dt,
√
∆t |v|

)

≤ 1

2ǫ2

∫

Ω

∫ n∆t

(n−1)∆t

(∂η

∂t

)2

dtdx+
∆tǫ2

2
(v, v).

Interchanging the order of integration and applying (15) imply for k ≥ 1,

|(ηn − ηn−1, v)| ≤ 1

2ǫ2

∫ n∆t

(n−1)∆t

∥

∥

∥

∂η

∂t

∥

∥

∥

2

dt+
∆tǫ2

2
(v, v)

≤ CH2k+2

2ǫ2

∫ n∆t

(n−1)∆t

∥

∥

∥

∂u

∂t

∥

∥

∥

2

k+1
dt+

∆tǫ2

2
‖v‖2.

�

The following lemma is proved easily.

Lemma 3.3. Let g be a piecewise smooth on the partition Th. If ḡ is the

average value of g(u) on each element K ∈ Th and ‖∇g‖0,∞ ≤ B, then

|(g(u)θ, ψ)− (ḡθ, ψ)| ≤ CBh‖θ‖0‖ψ‖0.
Theorem 3.4. For the solution (ûnH , σ̂

n
H) ∈ VH × MH of (9)-(10) and the

solution (un,σn) of the equations (4)-(5), there exists a positive constant C
independent of ∆t and H such that

‖un − ûnH‖ ≤ C(∆t+Hk+1),(22)
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‖σn − σ̂
n
H‖ ≤ C(∆t+Hk+1).(23)

Proof. For n = 1, 2, . . . , ℓ ≤ N , choosing v = ξnH and τ = ρn
H in (20) and (21)

respectively, adding two equations, and multiplying by ∆t, we obtain

(ξnH − ξn−1
H , ξnH) + ∆t(αρn

H ,ρ
n
H)

= ∆t(en, ξnH) + ∆t(f(un)−QHf(û
n
H), ξnH)− (ηn − ηn−1, ξnH).

Applying Cauchy-Schwarz inequality to the first term in left hand side and
using the results of Lemma 3.1-3.2 in the right hand side, we get with ǫ = 1

1

2
(ξnH , ξ

n
H)− 1

2
(ξn−1

H , ξn−1
H ) + ∆t(αρn

H ,ρ
n
H)(24)

≤ 1

6
∆t2

∫ n∆t

(n−1)∆t

∥

∥

∥

∂2u

∂t2

∥

∥

∥

2

dt+
1

2
CH2k+2

∫ n∆t

(n−1)∆t

∥

∥

∥

∂u

∂t

∥

∥

∥

2

k+1
dt

+∆t‖ξnH‖2 +∆t|(f(un)−QHf(û
n
H), ξnH)|.

In order to bound the last term of the right-hand side of (24), we consider
smoothness of f(u) (i.e., assumption (A1)) and the standard approximation
property of interpolation (8). Then we see that

|(f(un)−QHf(û
n
H), ξnH)|

≤ |(f(un)− f(ũnH), ξnH)|+ |(f(ũnH)−QHf(ũ
n
H), ξnH)|

+ |(QHf(ũ
n
H)−QHf(û

n
H), ξnH)|

≤ B2
1

2
‖ηn‖2 + 1

2
‖ξnH‖2 + CH2k+2

∑

K

|f(ũnH)|2k+1,2,K

+
1

2
‖ξnH‖2 + B2

1

2
‖ξnH‖2 + 1

2
‖ξnH‖2.

The derivative Dβf(ũnH) with |β| = k + 1, when expanded, yields nonlinear
terms involving the derivative of f up to order k+1 and the derivatives of ũnH
up to order k+1. On the other hand from inverse inequality and the estimate
(15), we have for r = 0, 1, . . . , k and 1 ≤ p ≤ ∞,

‖PHu
n − ũnH‖r,p ≤ CH−r−1+2/p‖PHu

n − ũnH‖
≤ CH−r−1+2/p(‖PHu

n − un‖+ ‖un − ũnH‖)
≤ CHk−r+2/p,

where PH is L2-projection operator onto VH with well known approximation
property(e.g., [2, 9]), for r = 0, 1, . . . , k, 1 ≤ p ≤ ∞ and K ∈ Th

‖v − PHv‖r,p,K ≤ CHk−r+2/p‖v‖k+1,2,K , ∀v ∈ Hk+1(K).

In particular, when r = k + 1 and p = 2, the following holds

‖v − PHv‖k+1,2,K ≤ C‖v‖k+1,2,K , ∀v ∈ Hk+1(K).



TWO SCALE PRODUCT APPROXIMATION OF SEMILINEAR PROBLEMS 275

Thus, for H ≤ 1, the norm ‖ũnH‖r,p is bounded by a constant C which depends

on only ‖un‖k+1. Hence
∑

K |f(ũnH)|2k+1,2,K is bounded by a constant C which

is independent of H . Since α(x) > α0 > 0, (24) becomes

‖ξnH‖2 − ‖ξn−1
H ‖2 ≤ ∆t2

3

∫ n∆t

(n−1)∆t

∥

∥

∥

∂2u

∂t2

∥

∥

∥

2

dt

+ CH2k+2

∫ n∆t

(n−1)∆t

∥

∥

∥

∂u

∂t

∥

∥

∥

2

k+1
dt+B2

1∆t‖ηn‖2

+ C∆tH2k+2 + (5 +B2
1)∆t‖ξnH‖2.

Summing above equations from n = 1, . . . , ℓ (1 ≤ ℓ ≤ N), we obtain

‖ξlH‖2 ≤ ‖ξ0H‖2 + ∆t2

3

∫ ℓ∆t

0

∥

∥

∥

∂2u

∂t2

∥

∥

∥

2

dt+ CH2k+2

∫ ℓ∆t

0

∥

∥

∥

∂u

∂t

∥

∥

∥

2

k+1
dt

+B2
1∆t

ℓ
∑

n=1

‖ηn‖2 + Cl∆tH2k+2 + (5 +B2
1)∆t

ℓ
∑

n=1

‖ξnH‖2

≤ (1− (5 +B2
1)∆t)‖ξ0H‖2 + ∆t2

3

∫ ℓ∆t

0

∥

∥

∥

∂2u

∂t2

∥

∥

∥

2

dt

+ CH2k+2

∫ ℓ∆t

0

∥

∥

∥

∂u

∂t

∥

∥

∥

2

k+1
dt+B2

1∆t

ℓ
∑

n=1

‖ηn‖2

+ CTH2k+2 + (5 + B2
1)∆t

ℓ
∑

n=0

‖ξnH‖2.

When 1− (5 +B2
1)∆t > 0, by discrete Gronwall’s lemma it follows that

‖ξℓH‖2 ≤C
(

‖ξ0H‖2 +∆t2
∫ ℓ∆t

0

∥

∥

∥

∂2u

∂t2

∥

∥

∥

2

dt+H2k+2

∫ ℓ∆t

0

∥

∥

∥

∂u

∂t

∥

∥

∥

2

k+1
dt

+B2
1T max

1≤n≤ℓ
‖ηn‖2 +H2k+2

)

.

In particular, let us choose the initial function û0H , σ̂
0
H to be the elliptic pro-

jection ũ0H , σ̃
0
H of the exact solution then ξ0H vanish. Hence, the estimate

‖ηn‖ ≤ CHk+1‖un‖k+1 for k ≥ 1 and the assumptions (A2) on u imply

‖εn‖ ≤ ‖ηn‖+ ‖ξnH‖ ≤ C(∆t +Hk+1).(25)

To estimate θn, it suffices to bound ρn
H , since θn = τn +ρn

H and τn can be
bounded using (16). For time level n and n− 1 in (20), we obtain the following
equation:

(α(ρn
H − ρn−1

H )

∆t
, τ
)

−
(

divτ ,
ξnH − ξn−1

H

∆t

)

= 0, ∀τ ∈ MH .(26)



276 D. KIM, E.-J. PARK, AND B. SEO

Taking τ = ρn
H in (26) and v =

ξnH−ξn−1

H

∆t in (21) and then adding the resulting
equations, we have

(α(ρn
H − ρn−1

H )

∆t
,ρn

H

)

+
(ξnH − ξn−1

H

∆t
,
ξnH − ξn−1

H

∆t

)

=
(

en,
ξnH − ξn−1

H

∆t

)

+
(

f(un)−QHf(û
n
H),

ξnH − ξn−1
H

∆t

)

−
(ηn − ηn−1

∆t
,
ξnH − ξn−1

H

∆t

)

.

Let λn =
ξnH−ξn−1

H

∆t . Then multiplying above equation by ∆t, we have from
Cauchy-Schwarz inequality and Lemma 3.1-3.2, for ǫ > 0

1

2
(αρn

H ,ρ
n
H) + ∆t‖λn‖2(27)

≤ 1

2
(αρn−1

H ,ρn−1
H ) +

∆t2

6ǫ2

∫ n∆t

(n−1)∆t

∥

∥

∥

∂2u

∂t2

∥

∥

∥

2

dt

+
∆tǫ2

2
‖λn‖2 + ∆t

2
‖f(un)−QHf(û

n
H)‖2 + ∆t

2
‖λn‖2

+
CH2k+2

2ǫ2

∫ n∆t

(n−1)∆t

∥

∥

∥

∂u

∂t

∥

∥

∥

2

k+1
dt+

∆tǫ2

2
‖λn‖2.

The estimate (22) proved above, the boundedness of f (i.e., assumption (A1))
and the standard approximation property of interpolation (8) imply that there
exists a positive constant C independent of H such that

‖f(un)−QHf(û
n
H)‖2 ≤ 2‖f(un)− f(ûnH)‖2 + 2‖f(ûnH)−QHf(û

n
H)‖2

≤ C
(

∆t+Hk+1
)2

.

Thus, for ǫ = 1√
2
, (27) becomes

1

2
(αρn

H ,ρ
n
H) ≤ 1

2
(αρn−1

H ,ρn−1
H ) +

∆t2

3

∫ n∆t

(n−1)∆t

∥

∥

∥

∂2u

∂t2

∥

∥

∥

2

dt

+ CH2k+2

∫ n∆t

(n−1)∆t

∥

∥

∥

∂u

∂t

∥

∥

∥

2

k+1
dt+ C∆t3 + C∆tH2k+2.

Multiplying by 2 and summing from n = 1 to ℓ (1 ≤ ℓ ≤ N), we get

(αρℓ
H ,ρ

ℓ
H) ≤ (αρ0

H ,ρ
0
H) +

2∆t2

3

∫ ℓ∆t

0

∥

∥

∥

∂2u

∂t2

∥

∥

∥

2

dt

+ CH2k+2

∫ ℓ∆t

0

∥

∥

∥

∂u

∂t

∥

∥

∥

2

k+1
dt+ C

∑

1≤n≤ℓ

(

∆t3 +∆tH2k+2
)

.
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So, for n = 1, . . . , N ,

α0‖ρn
H‖2 ≤ β0‖ρ0

H‖2 + 2∆t2

3

∫ T

0

∥

∥

∥

∂2u

∂t2

∥

∥

∥

2

dt

+ CH2k+2

∫ T

0

∥

∥

∥

∂u

∂t

∥

∥

∥

2

k+1
dt+ CT

(

∆t2 +H2k+2
)

.

Since ρ0
H vanishes, we obtain from (16), (25) and the assumption (A2) on u

‖θn‖ ≤ ‖τn‖+ ‖ρn
H‖ ≤ C(∆t+Hk+1). �

We now derive an error estimate for the approximate solution of the lin-
earized system (11)-(12). Subtracting (11)-(12) from (13)-(14), we obtain the
following error equations

(αγn
h, τ )− (µn

h , divτ ) = 0, ∀τ ∈ Mh,(28)

(µn
h − µn−1

h

∆t
, v
)

+ (divγn
h, v)(29)

=
(

f(un)− f(ûnH)− fu(û
n
H)(ûnh − ûnH), v

)

+
( ũnh − ũn−1

h

∆t
− un − un−1

∆t
, v
)

+ (en, v), ∀v ∈ Vh,

where µn
h := ũnh − ûnh, γ

n
h := σ̃n

h − σ̂
n
h.

Lemma 3.5. If ũnH is the solution of (13)-(14) and ûnH is the solution of (9)-
(10), then there exists a positive constant C independent of ∆t and H such

that

‖ũnH − ûnH‖0,4 ≤ C
(

H−1/2∆t+Hk+1/2
)

.

Proof. Subtracting (9)-(10) from (13)-(14), we have

(αρn
H , τ )− (ξnH , divτ ) =0, ∀τ ∈ MH ,(30)

(

ξnH − ξn−1
H

∆t
, v

)

+ (divρn
H , v) =(T0, v), ∀v ∈ VH ,(31)

where

T0 :=
{ ũnH − ũn−1

H

∆t
− ∂un

∂t

}

+ {f(un)−QHf(û
n
H)} := T1 + T2.

Putting v = ξnH in (31) and τ = ρn
H in (30) and adding the resulting equations,

we get
(

ξnH − ξn−1
H

∆t
, ξnH

)

+ (αρn
H ,ρ

n
H) = (T1, ξ

n
H) + (T2, ξ

n
H).(32)

To bound the first term of right-side of (32), we split T1 in two terms:

T1 =

{

ũnH − ũn−1
H

∆t
− PHu

n − PHu
n−1

∆t

}

+

{

PHu
n − PHu

n−1

∆t
− ∂un

∂t

}
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:= d1 + d2.

From the well-known superconvergnce result (e.g., [11]) between the L2-projec-
tion and the elliptic projection of un, we see that

|(d1, ξnH)| =
∥

∥

∥

∥

∥

(∆t)−1

∫ tn

tn−1

∂ωH

∂t
(·, s)ds

∥

∥

∥

∥

∥

‖ξnH‖(33)

≤ (∆t)−1

∫ tn

tn−1

∥

∥

∥

∥

∂ωH

∂t

∥

∥

∥

∥

ds ‖ξnH‖

≤ CH2k+4 +
1

2
‖ξnH‖2,

where ωH := ũnH − PHu
n.

From the definition of L2-projection and Lemma 3.1, we get

|(d2, ξnH)| =
∣

∣

∣

∣

∣

(

PHu
n − PHu

n−1

∆t
− un − un−1

∆t
, ξnH

)

+

(

un − un−1

∆t
− ∂un

∂t
, ξnH

)

∣

∣

∣

∣

∣

≤ 1

2
‖en‖2 + 1

2
‖ξnH‖2

≤ 1

6
∆t

∫ n∆t

(n−1)∆t

∥

∥

∥

∂2u

∂t2

∥

∥

∥

2

dt+
1

2
‖ξnH‖2.

Next, to estimate for T2, we consider the following relation

T2 = f(un)−QHf(û
n
H)(34)

= (f(un)− f(PHu
n)) + (f(PHu

n)− f(ũnH))

+ (f(ũnH)− f(ûnH)) + (f(ûnH)−QHf(û
n
H)) .

From the assumption (A1) on f , the well-known superconvergence result (e.g.,
[11]) between the L2-projection and the elliptic projection of un and the ap-
proximation property of interpolation (8), we see that for some u∗∗ ∈ V

(f(un)− f(PHu
n), ξnH) = (fu(PHu

n)(un − PHu
n), ξnH)(35)

+
(fuu(u

∗∗)

2
(un − PHu

n)2, ξnH

)

,

= ((fu(PHu
n)− f̄u(PHu

n))(un − PHu
n), ξnH)(36)

+
(fuu(u

∗∗)

2
(un − PHu

n)2, ξnH

)

,

|(f(PHu
n)− f(ũnH), ξnH)| ≤CH2k+4 +

1

2
‖ξnH‖2,(37)

|(f(ũnH)− f(ûnH), ξnH)| ≤ B1‖ξnH‖2,(38)
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|(f(ûnH)−QHf(û
n
H), ξnH)| ≤ CH2k+2

∑

K

|f(ûnH)|2k+1,2,K +
1

2
‖ξnH‖2.(39)

As in the proof of Theorem 3.4, we can show with (22) that
∑

K |f(ûnH)|2k+1,2,K

is bounded by a constant C which is independent ofH . Applying Lemma 3.3 for
g(un) = fu(PHu

n), with the standard approximation property of L2-projection
PH and the assumption on f , we can bound each term on the right hand side
of (35):

|(f(un)− f(PHu
n), ξnH)|(40)

≤ CB1

(

H‖un − PHu
n‖‖ξnH‖+ ‖un − PHu

n‖20,4‖ξnH‖
)

≤ CH2k+4 + ‖ξnH‖2.
From (33)-(40), (32) becomes

‖ξnH‖2−‖ξn−1
H ‖2≤∆t2

3

∫ n∆t

(n−1)∆t

∥

∥

∥

∂2u

∂t2

∥

∥

∥

2

dt+ (6 + 2B1)∆t‖ξnH‖2 + C∆tH2k+2.

Summing from n = 1 to ℓ (1 ≤ ℓ ≤ N), we have

‖ξℓH‖2−‖ξ0H‖2≤∆t2

3

∫ ℓ∆t

0

∥

∥

∥

∂2u

∂t2

∥

∥

∥

2

dt+(6+2B1)∆t
∑

1≤n≤ℓ

‖ξnH‖2+Cℓ∆tH2k+2.

Hence,

‖ξℓH‖2 ≤ (1 − (6 + 2B1)∆t)‖ξ0H‖2 + ∆t2

3

∫ T

0

∥

∥

∥

∂2u

∂t2

∥

∥

∥

2

dt

+ (6 + 2B1)∆t
∑

0≤n≤ℓ

‖ξnH‖2 + CTH2k+2.

When 1− (6 + 2B1)∆t > 0, by Gronwall’s lemma it follows that

‖ξℓH‖2 ≤ C

(

‖ξ0H‖2 +∆t2
∫ T

0

∥

∥

∥

∂2u

∂t2

∥

∥

∥

2

dt+H2k+2

)

.

We choose the initial function û0H to be elliptic projection ũ0H of the exact
solution. Then ξ0H = 0 and we have

‖ξnH‖ ≤ C
(

∆t+Hk+1
)

.

Thus, we conclude with the inverse inequality

‖ξnH‖0,4 ≤ CH−1/2‖ξnH‖ ≤ C
(

H−1/2∆t+Hk+1/2
)

.
�

Theorem 3.6. Let (ûnh, σ̂
n
h) ∈ Vh ×Mh be the solution of (11)-(12). Assume

that the relation between size of time step ∆t and mesh size H of coarse grid

satisfies ∆t ·H−1 = O(1). Then there exists a positive constant C independent

of ∆t, H and h such that

‖un − ûnh‖ ≤ C
(

∆t+ hk+1 +H2k+1
)

,
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‖σn − σ̂
n
h‖ ≤ C

(

∆t+ hk+1 +H2k+1
)

.

Proof. By Taylor expansion, there exists u∗ ∈ V such that

f(un) = f(ûnH) + fu(û
n
H)(un − ûnH) +

1

2
fuu(u

∗)(un − ûnH)2.

Hence, for any v ∈ V
(

f(un)− f(ûnH)− fu(û
n
H)(ûnh − ûnH), v

)

(41)

=
(

fu(û
n
H)(un − ûnh) +

1

2
fuu(u

∗)(un − ûnH)2, v
)

.

Taking τ = γn
h in (28) and v = µn

h in (29) and adding two resulting equations,
we have from (41)

(µn
h − µn−1

h

∆t
, µn

h

)

+
(

αγn
h,γ

n
h

)

=
(

fu(û
n
H)(un − ûnh)+

1

2
fuu(u

∗)(un − ûnH)2, µn
h

)

+
( ũnh − ũn−1

h

∆t
− un − un−1

∆t
, µn

h

)

+ (en, µn
h).

Applying the assumption on fu and fuu and using the result of Lemma 3.2 and
the following relationship

un − ûnh = un − ũnh + ũnh − ûnh = un − ũnh + µn
h,

we get with the fact α > α0 > 0

1

2∆t

(

‖µn
h‖2 − ‖µn−1

h ‖2
)

≤ B2
1‖un − ũnh‖2 +

1

8
B2

1‖(un − ûnH)2‖2

+
1

2∆t
Ch2k+2

∫ n∆t

(n−1)∆t

∥

∥

∥

∂u

∂t

∥

∥

∥

2

k+1
dt+

1

2
‖en‖2 + (2 +B2

1)‖µn
h‖2.

Summing over n = 1 to ℓ (1 ≤ ℓ ≤ N) and multiplying by 2∆t, we have from
Lemma 3.1

‖µℓ
h‖2 − ‖µ0

h‖2 ≤ (4 + 2B2
1)∆t

ℓ
∑

n=1

‖µn
h‖2

+∆tB2
1

ℓ
∑

n=1

(

‖un − ũnh‖2 +
1

4
‖(un − ûnH)2‖2

)

+ Ch2k+2

∫ ℓ∆t

0

∥

∥

∥

∂u

∂t

∥

∥

∥

2

k+1
dt+ C∆t2

∫ ℓ∆t

0

∥

∥

∥

∂2u

∂t2

∥

∥

∥

2

dt.

When 1− (4 + 2B2
1)∆t > 0, by Gronwall’s lemma

‖µℓ
h‖2 ≤ C∆t

ℓ
∑

n=1

(

‖un − ũnh‖2 + ‖(un − ûnH)2‖2
)
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+ C

(

∆t2 + h2k+2 + ‖µ0
h‖2
)

.

If we choose the initial function û0h = ũ0h, σ̂
0
h = σ̃0

h then µ0
h and γ0

h vanish. It
follows from (6), (15) and Lemma 3.5 that

‖µℓ
h‖2 ≤ Cℓ∆t max

1≤n≤l

(

‖un − ũnh‖2 + ‖un − ũnH‖40,4 + ‖ũnH − ûnH‖40,4
)

+ C∆t2 + Ch2k+2

≤ C
(

∆t2 + h2k+2 +H4(k+1) +H−2∆t4 +H4(k+1/2)
)

.

Hence, we have from the assumption ∆t ·H−1 = O(1)

‖un − ûnh‖ ≤ ‖un − ũnh‖+ ‖µn
h‖ ≤ C

(

∆t+ hk+1 +H2k+1
)

.(42)

Now, in order to estimate ‖σn − σ̂
n
h‖, we consider the equation (28) for time

level n− 1 and n. Then we have from (29) and (41)

(α(γn
h − γn−1

h )

∆t
, τ
)

−
(

divτ ,
µn
h − µn−1

h

∆t

)

= 0, ∀τ ∈ Mh,

(µn
h − µn−1

h

∆t
, v
)

+
(

divγn
h , v
)

=
(

fu(û
n
H)(un − ûnh) +

1

2
fuu(u

∗)(un − ûnH)2, v
)

+
( ũnh − ũn−1

h

∆t
− un − un−1

∆t
, v
)

+ (en, v), ∀v ∈ Vh.

Taking τ = γn
h, v =

µn
h − µn−1

h

∆t
and adding the resulting equations, we obtain

(α(γn
h − γn−1

h )

∆t
,γn

h

)

+
(µn

h − µn−1
h

∆t
,
µn
h − µn−1

h

∆t

)

=

(

fu(û
n
H)(un − ûnh) +

1

2
fuu(u

∗)(un − ûnH)2,
µn
h − µn−1

h

∆t

)

+
( ũnh − ũn−1

h

∆t
− un − un−1

∆t
,
µn
h − µn−1

h

∆t

)

+
(

en,
µn
h − µn−1

h

∆t

)

.

Letting λn =
µn
h−µn−1

h

∆t and multiplying by ∆t, we get

1

2
(αγn

h ,γ
n
h) + ∆t‖λn‖2

≤ 1

2
(αγn−1

h ,γn−1
h ) + ∆t(en, λn)

+ ∆t
∣

∣

∣

(

fu(û
n
H)(un − ûnh) +

1

2
fuu(u

∗)(un − ûnH)2, λn
)∣

∣

∣

+
∣

∣

∣

(

(ũnh − un)− (ũn−1
h − un−1), λn

)∣

∣

∣.
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So that, Cauchy-Schwarz inequality and Lemma 3.2 imply

1

2
(αγn

h,γ
n
h) + ∆t‖λn‖2

≤ 1

2
(αγn−1

h ,γn−1
h ) + ∆t

(

‖en‖2 + 1

4
‖λn‖2

)

+∆t

(

B2
1‖un − ûnh‖2 +

1

4
B2

1‖(un − ûnH)2‖2 + 1

2
‖λn‖2

)

+ Ch2k+2

∫ n∆t

(n−1)∆t

∥

∥

∥

∂u

∂t

∥

∥

∥

2

k+1
dt+

1

4
∆t‖λn‖2.

Multiplying by 2 and summing from n = 1 to ℓ(1 ≤ ℓ ≤ N), we have from
Lemma 3.1 and the fact that γ0

h vanishes

α0‖γℓ
h‖2 ≤β0‖γ0

h‖2 + C∆t2 + Ch2k+2

+∆t

ℓ
∑

n=1

(

B2
1‖un − ûnh‖2 +

1

4
B2

1‖(un − ûnH)2‖2
)

≤C∆t2 + Ch2k+2 + C max
1≤n≤ℓ

(

‖un − ûnh‖2 + ‖un − ûnH‖40,4
)

.

We conclude with (16), (42) and (15) associated with mesh size H and Lemma
3.5

‖σn − σ̂
n
h‖ ≤ ‖σn − σ̃n

h‖+ ‖γn
h‖ ≤ C

(

∆t+ hk+1 +H2k+1
)

.
�

As mentioned in introduction, we can get improved error estimates using
the interpolation operator with the following special nodal points (Gaussian
points) on triangle elements (see, for example, p. 360 in [15]):

Table 1. Gaussian points and weights for quadratures on a
triangle of area |K|.

k Degree of Barycentric Multiplicity Weights
Exactness Coordinates

1 2 (12 ,
1
2 , 0) 3 ω = 1

3 |K|
(ai, ai, 1− 2ai) ωi for i = 1, 2
for i = 1, 2

2 4 a1 = 0.445948 3 ω1 = |K| × 0.223382
a2 = 0.091576 ω2 = |K| × 0.109952

Lemma 3.7. Assume that TH is a quasi-uniform partition of Ω into triangles.

For each K ∈ TH and v ∈ Pk(K), there is a constant C, independent of H,

such that for k = 1, 2,
∣

∣

∣

∣

∫

K

(

f(v)ξnH −QHf(v)ξ
n
H

)

dx

∣

∣

∣

∣

≤ CH2k+2|f(v)ξnH |2k+1,2,K .
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Proof. Since the order of quadrature (degree of exactness) is 2k, k = 1, 2 for
Gaussian quadrature formula on triangle and the polynomial QHf(v)ξ

n
H is of

degree ≤ 2k, by the definition of QHf(v) we have

∫

K

QHf(v)ξ
n
H dx =

nk
∑

j=1

ωjQHf(v(gj))ξ
n
H(gj)

=

nk
∑

j=1

ωjf(v(gj))ξ
n
H(gj)

=

∫

K

QH

(

f(v)ξnH
)

dx,

where ωj are Gaussian weights and gj are Gaussian points in K and nk =
(k+1)(k+2)

2 is the total number of points. Thus, the proof is completed by the
error estimates of Gaussian quadrature formula (Lemma 8.4 in [15]). �

Lemma 3.8. Under the assumption of Lemma 3.7, if v ∈ VH and ‖v‖r,p, r =
0, 1, 2, . . . , k, p ≥ 1 is bounded by a constant independent of H, then there exists

a positive constant C independent of H such that
∣

∣

∣

(

f(v)−QHf(v), ξ
n
H

)∣

∣

∣ ≤ CH2k+3 + ‖ξnH‖2.

Proof. By Lemma 3.7 we have

∣

∣

∣

∣

∣

(

f(v)−QHf(v), ξ
n
H

)

∣

∣

∣

∣

∣

≤
∑

K∈TH

∣

∣

∣

∣

∫

K

(

f(v)ξnH −QHf(v)ξ
n
H

)

dx

∣

∣

∣

∣

(43)

≤ C
∑

K∈TH

H2k+2|f(v)ξnH |2k+1,2,K

≤ C
∑

K∈TH





∑

|β|=2k+1

H4k+4‖Dβ(f(v)ξnH)‖20,2,K





1/2

.

Note that the product rule gives

Dβ(f(v)ξnH) =
∑

γ+δ=β

β!

γ!δ!
Dγf(v)DδξnH .

So, by Hölder inequality, we get

‖Dβ(f(v)ξnH)‖20,2,K =

∫

K

|Dβ(f(v)ξnH)|2 dx

≤ C

∫

K





∑

γ+δ=β

(Dγf(v))2









∑

γ+δ=β

(

DδξnH
)2



 dx
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≤ C

∥

∥

∥

∥

∥

∥

∑

γ+δ=β

(Dγf(v))2

∥

∥

∥

∥

∥

∥

2

0,2,K

∥

∥

∥

∥

∥

∥

∑

γ+δ=β

(DδξnH)2

∥

∥

∥

∥

∥

∥

2

0,2,K

,

where |γ|+ |δ| = 2k + 1. Hence, the equation (43) becomes
∣

∣

∣

∣

∣

(

f(v)−QHf(v), ξ
n
H

)

∣

∣

∣

∣

∣

(44)

≤ C
∑

K

(

H2k+3‖f(v)‖22k+1,4,KH
2k+1‖ξnH‖22k+1,4,K

)1/2

≤ C
∑

K

(

1

2ǫ
H4k+6‖f(v)‖42k+1,4,K +

ǫ

2
H4k+2‖ξnH‖42k+1,4,K

)1/2

.

To bound the first term of (44), we apply generalized Hölder inequality to the
identity

Dγ
(

f(v)
)

=

|γ|
∑

i=1











∑

∑i
1
γj=γ

γj 6=0

f (i)(v)Dγ1v · · ·Dγiv











.

Then we get

‖Dγ
(

f(v)
)

‖0,4,K

≤
|γ|
∑

i=1











∑

∑
i
1
γj=γ

βj 6=0

‖f (i)(v)‖L∞‖Dγ1v‖0,q1,K · · · ‖Dγiv‖0,qi,K











≤ C1,

with
∑

1/qj = 1/4. Here, we have used the smoothness of f and the fact that v
is a polynomial of degree k on each element and ‖v‖r,p, r = 0, 1, . . . , k, p ≥ 1,
is bounded. Next, we consider the second term. Since DδξnH for |δ| > k is
identically zero, from the inverse inequality

‖DδξnH‖40,4,K ≤ C2H
−4k−2‖ξnH‖40,2,K , ∀ |δ| ≤ k.

For the constantC in the equation (44), letting ǫ = 2
C2C2

the proof is completed.
�

Theorem 3.9. Assume that TH is a quasi-uniform partition of Ω into trian-

gles. Let (ûnh, σ̂
n
h) ∈ Vh × Mh be the solution of (11)-(12). Assume that the

relation between size of time step ∆t and mesh size H of coarse grid satisfies

∆t · H−1 = O(1). Moreover, assume that f is sufficiently smooth. Then, for

k = 0, 1, 2, there exists a positive constant C independent of ∆t, H and h such

that

‖un − ûnh‖ ≤ C
(

∆t+ hk+1 +H2k+2
)

,
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‖σn − σ̂
n
h‖ ≤ C

(

∆t+ hk+1 +H2k+2
)

.

Proof. In the case k = 0, the identity

Qhf(vh) = f(vh), ∀ vh ∈ Vh

holds. This says that all terms related to interpolation disappear in the proofs
of Theorem 3.4, Lemma 3.8 and Theorem 3.6. So the proof is easily completed.

In the case k = 1, 2, from the result of Lemma 3.8 the equation (39) in the
proof of Lemma 3.5 becomes

|(f(ûnH)−QHf(û
n
H), ξnH)| ≤ CH2k+3 + ‖ξnH‖2.

So we get

‖ũnH − ûnH‖0,4 ≤ C
(

H−1/2∆t+Hk+1
)

,

which is the improved result compared with Lemma 3.5. Using a similar argu-
ment of the proof of Theorem 3.6, we conclude the proof. �

Remark 3.10. In the case k = 0, Theorem 3.9 holds for any mixed finite element
space on rectangular mesh.

4. Numerical results

In this section, we apply the two scale backward Euler mixed finite element
method with interpolated coefficients. We perform numerical experiments to
demonstrate the effect of our two scale algorithm. For this, we consider a
semilinear parabolic problem:











ut − div(∇u) + u3 = g in Ω× [0, 1)

u = 0 on ∂Ω× [0, 1)

u(·, 0) = 0 in Ω× {0},
(45)

where Ω = (0, 1)× (0, 1) and g is computed from the exact solution u(t, x, y) =
txy(1− x)(1 − y).

Let Th be a uniform partition of Ω into triangles. Consider the Raviart-
Thomas finite element space of index 1 (RT1) given as

Mh := {τ ∈ H(div; Ω) : τ |K ∈ RT1(K), ∀K ∈ Th},
Vh := {v ∈ L2(Ω) : v|K ∈ P1(K), ∀K ∈ Th}.

Thanks to Theorem 3.9, the bases of P1(K) on each triangle K consist of
Lagrangian nodal functions based on barycentric coordinates (0, 12 ,

1
2 ), (

1
2 , 0,

1
2 )

and (12 ,
1
2 , 0). More precisely, the basis of P1(K̂) on reference triangle K̂ is

given by

{ 2ξ + 2η − 1, −2ξ + 1, −2η + 1 },

where reference triangle K̂ is a triangle with vertices (0, 0), (1, 0) and (0, 1).
Now, we apply our numerical scheme to the problem (45). We equally divide
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time interval [0, 1] and set tn = n∆t, n = 1, 2, . . . , N and ∆t = 1/N . We seek
solutions at final time t = 1.

On coarse-scale grid, our nonlinear system can be solved by an iteration
method, for example:

(σ̂n,m
H , τ )− (ûn,mH , divτ )=0, ∀τ ∈ MH ,

∆t(divσ̂n,m
H , v) + (ûn,mH , v)=∆t(g(x)−QH(ûn,m−1

H )3, v) + (ûn−1
H , v), ∀v ∈ VH ,

where n denotes the time level and m the iteration index. On fine-scale grid,
we solve the following linear system:

(σ̂n
h , τ )− (ûnh, divτ ) = 0, ∀τ ∈ Mh

∆t(divσ̂n
h , v) + ((1 + 3∆t(ûnH)2)ûnh, v) = ∆t(g(x) + 2(ûnH)3, v)

+ (ûn−1
h , v), ∀v ∈ Vh.

For each time step, the computation of (QH(ûnH)3, φj) for ûnH =
∑

ciφi is
carried out as follows

(QH(ûnH)3, φj) = D(c.∧3),

where c.∧3 is a vector whose ith component is c3i and D is a diagonal matrix
with Dij = (φi, φj) which is exactly computed by Gaussian quadrature rule for
k = 1 as in Table 1

(φi, φj) =
∑

K∈Th

∫

K

φiφj dx =
∑

K∈Th

(

3
∑

ℓ=1

ωφi(gℓ)φj(gℓ)

)

.

Thus, our two-scale product approximation procedure can lead to great com-
putational advantages without sacrificing the overall accuracy of the scheme.
Indeed, we present convergence orders for ‖u− ûh‖ and ‖σ− σ̂h‖ in the follow-
ing table. The coarse scale mesh H and fine scale h are chosen so that H = h1/2

according to Theorem 3.9. Table 2 shows optimal convergence results which
are in good agreement with the theory developed in this paper.

Table 2. L2-error norms and convergence orders (RT1 × P1 with ∆t = 0.1).

1/h(1/H) ‖u− ûh‖ ‖σ − σ̂h‖ C.O. for u C.O. for σ
4(2) 1.3689e− 003 5.7954e− 003
16(4) 8.7236e− 005 3.7649e− 004 1.99 1.97
36(6) 1.7250e− 005 7.4775e− 005 2.00 1.99
64(8) 5.4596e− 006 2.3704e− 005 2.00 2.00
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