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1. Introduction

In {17 Payne and Stakgold proved the following result: Let # be a solution of
(1.1 Hu+f(u)=0 in DCR", u=:0 on aD.

If the boundary 8D has nonnegative mean curvature, then the functional
“
= lgrad #|*+2 I f(s)ds attains its maximum at a point where grad »=0.
[}
In this paper we give an extension of this theorem to the case that = is a solution

of

(1.2 Au+ fQu, «%»Igrad #[{¥)=0 in D.

In this case the corresponding functional is F(x, ~é—lggmd #|?y with F(u,v) a

function satisfying that
F,=fF, and F,>0

for we=R and v°>0. Our result is then the following:

Let # be a solution of (1.2). Then the above functional attains its maximum on
8D or at a point where grad #=0. If, moreover, the boundary value of » is constant,
then F(u, ~%]grad #|*) attains its maximum at a point x such that either

(a) grad #(x)=:0; or

(b) grad w{x)+0 and the mean curvature of 8D is strictly negative.

Another extension to the parabolic problems is given:

If 2#(x,t) is a solution of
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(1.3) Du—u A fu, %uigrad #|2) =0 in D=0, T).

Then the functional F(z, %«vlgrad #|*) attaing its maximum at (x,¢) such that (i)
a€=0D, (ii) {=0 or (iii) grad w=0 at (x,1).
If, moreover,  is constant on 9D x{0,T), then, instead of (i), we may have

(iv) x¢=8D and the mean curvature of 80 at x is strictly negative.

2. Preliminary iemmas

Throughout this paper we assume appropriate conditions on the smoothness of
functions and the boundary of a bounded domain in the » dimensional Euclidean space
R". We make use of the notations F,, F, and w; to indicate the partial derivatives
of F(u,v) and w(x) (or w(x,%)) with respect to the corresponding variables w,» and
x;. As usual, we adopt the summation convention on repeated indices. For w(x) or
w(x,t), we denote by Aw and grad w the Laplacian and the gradient of w with
respect to the space variable x.

Let F(w#,v) be a continuous function on Rx F, which is of class C* in Kx R,.. Our

result starts with the following two technical lemmas.

_ Lemma 1. Suppose that #(x) is a solution of (1.2). Then the function

w(x)=F(u(x), -‘,Iéalgradu(x)lz) satisfies the inequality

2. D Aw-—Le.grad w/F.2| grad u|?>—F, f+F}F,+ |grad »|*x
(Fufv"'vau‘*'Fuu "'sz(P'u/l;‘u)+F00(Fu/Fv)z)

at points where grad »+(0 and F,>>»(0, with some bounded vector L.

Proof. Setting v(x):-%—lgrad u(x)|?, we get, by successive differentiation, the

identities
(2- 2) wi:FUuh+Fvvh:
AMw=F Nu+F, 00+ F bty +2F 005+ Foutavs,
Vp=UiWis,

VANCESE FTY TP o TFVAN PN
Taking account of the Schwarz’s inequality,

-
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from (1.2), we deduce that

2.4 AP0 U~ ity — F Al

Substituting vi=(wa~Fu)/F, in (2.2) and (2.4), we deduce (2.1), with

Foawy—2F Fouy+ (grad w|*(—~F,fous+2F oty + F e —2F Fouy) as the k-th component

’

of L. This completes the proof. //;

In the case of parabolic problems we have also an analogue of the preceding lemma.

Lemma 2. Suppose that #(x,?) is a solution of (1.3). Then the function w(x,?)

by Aw-—-w,.

Proof. Straightforward calculation leads us to

we==F .+ F,,
Aw—w,=F (Au—1) + F (A —0) + Fottatey 2 F pousta+ Fostats,
Ao —p, =gt u (Dw ).

Now, following the proof of lemma 1, we come by (2.1) with Aw replaced by

Aw—we [/

3. Maximum Principles

In -this section we assume that

(3. 1) Fu::fF'u
(3.2) F,>»0 for ue=R, v>0.

Taking into account that /= (F W Fv—F.Fu)/F,? and that f,=(FuFy—FFw)/F.2,
with a simple calculation, we can see that the expression on the right hand - side of
(2.1) vanishes to zero, for =R and v>0.

Now let #(x) be a solution of (1.2), we set
w(x)=F(u(x), %«— lgrad w(x){*).

Then by Lemma 1 we have



4 Jeong-Seon Baek
(3.3) Hw—L-grad w/F.}|grad u{*>0,

whenever grad 0.

Let U be the set of all x in D such that 2 attains its maximum at x and
grad u(x)+#0. Then, by the ordinary maximum principle, it follows that U/ is an open
set, If U is not empty, then the boundary of U must contain a point on the boundary
of D or a point where grad #==0, hence it follows that w attains its maximum on the
boundary of D or at a point where grad #=0, which holds also in thé case when U

is empty. We sum up in

Theorem 1. Let # be a solution of (1.2). Suppose that F(w,v) satisfies (3.1) and
(3.2). Then F(u, -%Igrad #|*) attains its maximum on the boundary of D or at a

point where grad u=:0.

Remark. Suppose that U is not empty and that grad #=0 on . Then the boundary
of U is contained in that of D, and hence U=D, since D is a domain. Thus » is
constant and grad #=#0 in D. It is very interesting to distinguish the problems for

which this situation may happen. But this is not the purpose of the present paper.

Now we continue the arguement preceding Theorem 1.

Suppose that w attains its maximum at a point x on the boundary of D with
grad #(x)#0. Applying the second maximum principle of Hopf, we deduce that

(a) w is constant in a neighborhood of x; or

(b) ow/on>>0 at x,
where n denotes the outward unit normal to the boundary of D.
In case (a), U is not empty, hence, by the preceding remark, we have two possib-
ilities:

(al) w is constant and grad #+0 in D; or

If the boundary value of » is constant, then the possibility (al) dose not arise. If,
moreover, the boundary of D has nonnegative mean curvature, then (b) cannot hold.

In fact, we have

dw/dn=wym= (Fuata+ Fo)m=F,(fu,+uu;)n
=F,(uau—w ANu)yny=—F,|grad u|*H,
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by noting that the mean curvature A is equal to
j‘.‘(uiuih“b”“uuuﬂlg)/Igl"ad u$3

according as »=-grad #»/|grad »|. Thus (b) implies that H(x)<0.

Summing up, we have

Theorem 2. In addition to the hypotheses of Theorem 1, suppose that = is constant
on the boundary of 1. Then w==F(u, -%m{grad #|%)y attains its maximum at a point

where grad »=0, or at a point on the boundary where the mean curvature is strictly
negative. In particular, if the mean curvature of the boundary of D is nonnegative,

then 2 has its maximum at a point where grad u«=0.

Remark. In U, the level surfaces of u have the zero rhean curvature, as can be

shown by the arguement preceding Theorem 2.

With the help of Lemma 2 and the ordinary maximum principle for parabolic

inequalities, we can prove the following maximum principle for the problem (1.3).

Theorem 3, Let u(x,?) be a solution of (1.3). Suppose that F(w,v) satisfies (3.1)
and (3.2). Then w(x,{)=F(n, -%Igrad #|*) attaing its maximum at a point where
grad u==0, or at the parabolic boundary of Dx(0,7T). If » is constant on the boun-
dary of D at every instant of time and if the boundary of D has nonnegative mean

curvature, then w attains its maximum at a point where grad =0 or t==0.

Remark 1. Without any essential change of arguements, we can investigate the

problem, with A assumed to be a constant vector,
putA-grad u—u,+ f(u, —5-|grad u[)=0 in Dx(0,T),

and obtain the same result as in the preceding theorem.
For the equations
atlu+atu, -+ f(u, .,,%«a“u.’u,)mo in D, or
aluy+atu;—u+ fQu, %~»a‘fu,ui)::0 in Dx(O,7T),

we can obtain, with the corresponding functional ¥ (z, -%wa”u.-u,), similar results to



6 Jeong-Seon Baek

the preceding theorems. Here, a'/ is a positive definite constant matrix and a' is a
constant vector. In the case when the coefficients depend on x in D, then similar
result may be obtained with some technique of Riemannian geometry, under some
additional assumptions. It is a very difficult problem to distinguish out much more
general classes of equations of elliptic or parabolic type for which analogues of the

preceding results could be obtained; for instance, in case of the equations
Au+ f{x,u)=0 in DZTR"

we have as yet no knowledge of analogues of Theorem ] and 2.
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