01 %] &= ubX] AlO] A2}

L

e
2
I
gl
I
2
0K

o
JT

4 A
QAL ohaT o)
(2008. 2. 10. &4 7 2008. 6. 10. A =H)

An Application of Time Discontinuous Finite Element Method for
Heat Conduction Problems
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Abstract : A finite element method which is discontinuous in time is developed for the solution of the classical
parabolic model of heat conduction problems. The approximations are continuous with respect to the space variables
for each fixed time, but they admit discontinuities with respect to the time variable at each time step. The method is
superior to other well-known approaches to these problems in that it allows a wider range of moving boundary value
problems to be dealt with, such as are encountered in complex engineering operations like ground freezing. The method
is applied to one-dimensional and two-dimensional heat conduction problems in this paper, although it could be ex-
tended to more higher dimensional problems. Several example problems are discussed and illustrated, and comparisons
are made with analytical approaches where these can also be used.
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1. Infroduction kind are widely used in practice and well understood
numerically. However, these methods are less appro-
priate for some time-dependent problems, in particular

tions is of great importance in the modelling of many for time-dependent free surface boundary value pro-

engineering system. With the large number of numerical blems. In the solution of large scale transient problems
methods for parabolic partial differential equations n

The solution of parabolic partial differential equa-

that involve phase boundaries during nonequilibrium

vogue there is a need for comprehensive criteria to thermal processes or classical boundary layers, it might

compare the accuracy of the various suitable methods. be hard to accurately capture the heat wave behavior.

The most commonly used numerical method for the Recently, the time-discontinuous Galerkin method based

classical parabolic model of heat conduction problems upon using a finite element formulation in time has

is based on a Galerkin discretization in space followed evolved. This method, working from the differential

by a difference approximation of the derivatives in equation viewpoint, is different from those which

have been previously studied in recent years™. The
idea is to approximate each element in the solution of

the resulting semi-discrete system of time-dependent
ordinary differential equations”. Procedures of this

a system of partial differential equations by a discon-

dbkim@hknu.ac kr tinuous piecewise polynomial on one subinterval at a
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time. The approximations are continuous with respect
to the space variables for each time step, but they ad-
mit discontinuities with respect to the time variable at
each time step. In particular, the elements can be
chosen arbitrarily at each time step with no connec-
tion with the elements corresponding to the previous
step. Eriksson et al.¥ and Jamet” have performed well
in practice and established a comprehensive set of
mathematical results by using these methods. Structural
dynamic problem by a time-discontinuous Galerkin
method has been achieved by Li. and Wiberg”. Kim”
also has solved two-dimensional heat equation by dis-
continuous time-space Galerkin method. However, most
of the early works on the discontinuous Galerkin
method for differential equations have been mathe-
matically oriented and proved. In this paper, our con-
sideration will be confined to problems of non-
stationary heat conduction of finite regionss). The
finite element method is described in detail, with em-
phasis placed on the formulation of a finite element
for the general linear parabolic equations in a given
time-dependent domain based the time-discontinuous
Galerkin approach. By using the discontinuous dis-
cretization in time, we are able to match sequentially
through time and solve for only a fraction of the total
solution at one time. The mathematical properties of
the time-discontinuous Galerkin method for unsteady
problems are completely analogous to those of the
Galerkin method for the steady case, as observed by
Bruch and Zyvoloski”. This is important because the
construction of a good method based upon the Galerkin
method for a steady problem readily extends to un-
steady problems. Some numerical examples which con-
firm the stability analysis and in fact suggest that even
more general results may be obtainable. Based on the
numerical success of the time-discontinuous Galerkin
method for parabolic differential equations, this research
can be extended the method to problems of multi-
dimensional transient general problems.

2. Governing Equations

The problem which is considered here is the nu-
merical solution of the quasilinear parabolic equation
typical of unsteady thermal fields in substances where
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the context of application will be that of a three-
dimensional heat conduction problem.

ac, T - V * (kVT(x,y,2,0) = Gx, p, 2, in V< I (1)

subjected to boundary conditions:

I(x,y,z,)=T, for t>0 on S (2)
kNT(x,y,2)=0) for t>0 on S, (3)
kNT(x,y,2) +hfT-Tw)=0 for t>0 on S; 4

and initial condition as follow.
T(x,y,z, )=T,(x,y,2) in V(0), x,y,z€ V (%)

The equations refer to unsteady thermal fields in
substances with thermophysical properties dependent
on temperature, where & is the thermal conductivity
of materials(W/m - C); o is the density of material
(kg/m’); ¢, is the specific heat of material(W - h/kg -
1), G is the rate of internal heat generation(W/m3);
T is the temperature field(C) for x, y, z < V at time
t €1 and where [ is the time domain; V is the
spatial gradient operator; 73 is the surface prescribed
temperature(C); Ox(?) is the surface prescribed heat
flux(W/m°); A, is the heat transfer coefficient(W/m’ -
C); T is the surrounding temperature(C); 7, is the
initial temperature field(C); T is the temperature
first-order time derivative( 077/ 0¢). S1, S and S; are
the boundary on which temperature i1s specified and
heat flux is specified and convection heat loss is spe-
cified, respectively.

3. Discontinuous Approximations in Time

With the traditional finite element method, equation
(1) can be discretized in spatial domain and expressed
as

KTH+ KTO=00),t €1 (6)

Each component matrix is given as
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K= ac, f N'NGV, 7
V

= [ B'DBav h, N'NdS, 8

K '/ 14 " -/ S ®

o) = f GNav - f ONas+ f NS ()

where K. can be regarded as the element thermal
diffusivity matrix, K; is the element matrix related to
time dependence, () is the element nodal vector of
forcing parameters, which can be time dependent.
Consider a partition of the time domain, having the
form#ty <Hh <p<.. <Tylet {t ;0 <n < N}
be a finite sequence of real numbers with % = 0, #,
< ty1 and denote by I, = [tn, tyr1] the n-th time in-
terval. For the typical time instant #, a temporal
jump operator of 7T is introduced with the notation

[T()] = T(tn) - TU) (10)

where

T(t) = lim T, - A)

A—03

Using the usual weighted residual approach to
develop an integral equivalent to equation(6), the time-
discontinuous Galerkin approximation to T on each
mterval [, can now be formulated as

t

tﬁ+1 . tﬁ+l
f (K. T+ K.T) Welt = f Ot) Wt
t, n
after arranging the terms
te ty
f KT Wdr + f K.TWdt +
t, t
t

b1 - thel
f KT+ K.T) Wit = f o0 W (11)
¢ .

This equation is decomposed into discontinuous
and continuous time intervals. The value of the
approximation at #,, a point of discontinuity in the
approximating polynomial 7, is given by (I{¢,) +
T(t,))2. This is an average across the jump. On the

SH=EoRd eS| K], 233 M|3%, 20084

other hand, the derivative of T with respect to time
using the delta function &(¢) is defined as

: . T@, +HA2)= T, —A/2)
Rtn) = him X

= (Tts) - T(n)) 8(t - 1)

= (T(t,) 6(¢ - t)

Substituting of delta function and average mean
value into equation(11) leads to

KT - T(5) f :_: K(t - 1,) Wit +

K, N N i .
Wy @)+ TE) W+ [ @i kD) war=

tn

f t Of) Wt (12)

As A approaches zero, the second term of equation
(12) vanishes. Integrating the last term of Equation
(12) by parts leads to

tar) .
[ kT KW+ K T
tn

(For) W(tar) - K: T W(tn ) = f i’_m o) wdt (13)

t

with the initial condition

%) =T, (14)

The integral in equation”” resulting from integration-

by-parts of the time flux constitutes the discontinuous
Galerkin formulation.

4. Finite Element Formulation

A typical weighted residual equation can now be
written assuming that the full domain of investiga-
tion corresponds with that of one element. Proceeding
in the usual manner of discretization, with time as
the independent variable, we can write the finite ele-
ment functions for the »-th mesh

T= o) Toro+ Funi(t) Tpri for tEL, (15)
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where 7.0 are the nodal values of T at nodal
points ¢, Tar at fmwi, Pwo and Wn are the
piecewise polynomial temporal interpolation functions
for node #n. As only the first derivatives are involved
in equation(6), first-order polynomials are sufficient
to represent the interpolation functions %, in this
approximation. Consider now a finite element of
length Az with T taking on nodal values T and
To+1. These interpolation functions are assumed to be
piecewise linear and are defined as

Prlt) = 2 (16)
W(t) = ;t” (17)

In terms of the local coordinate 7, these interpola-
tion functions and their derivatives can be written as

0<n<l n=-- (18)
At
' —1
5I/""'O(U): 1- n Lpn-i—o - *.Ath (19)
: 1
Fr(m=nY, T A (20)

Insertion of the approximation for the function
(18-20) into the variational equation(13) can be written
as

toer .
f ('Kt( Wn Tn+0+ yjnﬂ Tm-]) I/[é + K-( SUn Tn+o+
t+

n

Frt Tue )W)t + T o) Wit 1) - T(n) Wiltn ) =

for1
f OWidt for i=n+o,n+1 @1)
tn

Using W; = ¥, =1 - n, and substituting the above
functions of equation(18-20) into equation(21), we get
as

1 1 1 1
(Kt 3 KeAAD) Toot (Kt = Ke AT - KT =

1
— AtQpio for i=n+o

5 (22)
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1 1 1 1

—;— AtQno for i=n+1 23)

The above equation is a recursive formulae,
containing unknown values linking two times »n+ 0
and n+1 spaced Af apart. It is remarked that
continuity of the nodal temperature vector 7, at any
time level #, in the time domain is automatically
ensured in the present method. Because the initial
values of the unknowns are specified, unknown
values as successive times can be calculated. These
linear algebraic equations are solved recursively,
with iteration at each time step if necessary.

5. Numerical Implementations and
Discussions

5.1. One-dimensional transient heat conduc-
fion
To illustrate the formulation of the method and its
efficiency the solution of a simple problem(a = 1, &
= 1, ho = 1, ¢, = 1) is presented. The problem is
stated as

2
EOM 2 n 0<x<]
O:CicI T ot
subject to

w0, ) =10, u(l, )+ u(l, =2, u(x,0)=3

The analytical solution for this problem is derived

as

2 2
ap, t

u(x, H)=10+ Y, c,sin(px)e
n=1

9 o CoOS
1+ cos’p,, (N1 Pn
sinp,,

( ]

Pi Py

Py

Cn )+8

COSp,, _ 5
)], sinp,+p,cosp,=0, a =1

Fig. 1 presents profiles of temperature at five
different times. These results in Fig. 1 show how the
methods compare to the analytical solution with Af¢
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Fig. 1. Temperature distributions at various times versus
distance,

= 0.01 sec. There is no visual difference between the
analytical solution and the results of the disconti-
nuous finite element method. The agreement of both
solutions 1s quite good.

5.2. Two-dimensional transient heat conduc-
fion
The problem is stated as

o 2u 55} 2u ou

ke + k,— = ac,——
3:63.’,‘2 ?JayQ I

mo<x<1l,0<y<1t>0
subject to

w0, v, ) =0, u(l, y, ) = 0, u(x, 0, 1) = 0,
ulx, 1, H =0, u(x, y, 0) = 1

The Fourier solution is expressed as

u(x,y, l‘) — Z Z Amn e“ [m27r2+n27r2]t

(sinmmx) (sinnmy)
1

Amn = (cosmm— 1 )}{(cosnm—1)

mmrz

For simplicity, the bar is considered to be of a
unit length and has been made for ten elements for
each side. Hence, the employed finite element mesh
consists of 10x10 rectangles. The thermophysical pro-
perties used for computation are also simple values
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Fig. 2. Temperature distributions at various time levels,

as k=1, a =1 and ¢, = 1. The basic time incre-
ment was chosen to be 0.01sec., which corresponds
to At < ac(Ax) < 2k. Compared with the solutions
obtained by using the analytical method, the accu-
racy of the present results is favorable. The large
time increment At = 0.15 sec is taken for numerical
stability considerations. Fig. 2 presents profiles of
temperature at three different time levels(r = 0.03
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sec, ¢ = 0.05 sec, t = 0.08 sec) with Af = 0.01 sec.
It 1s noted that in all cases the solution is very
accurately predicted, even with the five element model
and the large time step. However, for an accurate
prediction of the temperature, a finer finite element
discretization and smaller time step need to be
employed.

6. Conclusions

We have demonstrated that some of the parabolic
type problems encountered in such branches of engi-
neering as heat conductions can be analyzed success-
fully by means of the time-discontinuous Galerkin
finite element method. A program has been
developed for the case of one-dimensional and
and the

.solutions of some examples have been given in this

two-dimensional rectangular elements,
paper. In comparison with the traditional finite
element method, the present method possesses a
number of usual advantages that made solutions very
divergent. We shown  that the

time-discontinuous method can provide very accurate

have

solutions to the unsteady heat conduction problems.
No significant instability problems and much more
rapid convergence to the analytical solution were
experienced in this approach than the standard
semi-discrete method. It is generally said that the
disadvantage of time continuous finite element methods
is that a small time increment should be taken to
insure numerical stability. This is particularly serious
when the moving heat source produces steep gradients
of the temperature within and near the region of
moving source. We have demonstrated the efficiency
of using finite elements by allowing discontinuities
with the respect to the time variables at each time
step. It may use fewer elements and larger time step
size. Furthermore, we showed that the time-discon-
tinuous methods lead to a unconditional stable higher
accurate ordinary differential equations solver. This
is in contrast to the conditional stability of some time-
continuous methods. Furthermore, the time-discontinuous
method seems conducive to the establishment of
problems for capturing oscillations due to the steep
gradients.
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