• Title/Summary/Keyword: PLL Circuits

Search Result 79, Processing Time 0.023 seconds

A Design of Gate Driver Circuits in DMPPT Control for Photovoltaic System (태양광 분산형 최대전력점 추적 제어를 위한 고전압 게이트 드라이버 설계)

  • Kim, Min-Ki;Lim, Shin-Il
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.3
    • /
    • pp.25-30
    • /
    • 2014
  • This paper describes the design of gate driver circuits in distributed maximum power point tracking(DMPPT) controller for photovoltaic system. For the effective DMPPT control in the existence of shadowed modules, high voltage gate driver is applied to drive the DC-DC converter in each module. Some analog blocks such as 12-b ADC, PLL, and gate driver are integrated in the SoC for DMPPT. To reduce the power consumption and to avoid the high voltage damage, a short pulse generator is added in the high side level shifter. The circuit was implemented with BCDMOS 0.35um technology and can support the maximum current of 2A and the maximum voltage of 50V.

The design of a charge pump for the high speed operation of PLL circuits (High speed에 필요한 PLL charge pump 회로 설계 및 세부적인 성능 평가)

  • 신용석;윤재석;허창우
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.2
    • /
    • pp.267-273
    • /
    • 1998
  • In this paper, we designed a charge pump with a differential current switching structure and it was made of a MESFET with high speed switching Property compared with CMOSFETs. The charge pump with a differential current switching structure is analyzed about operating property of circuit in high frequency band. Also we propose a method on it's characteristics estimation. The designed circuit is simulated by HSPICE simulator, and in view of the results we think that the charge pump of this study can be used in circuits of 1 GHZ frequency band grade.

  • PDF

A Delta-Sigma Fractional-N Frequency Synthesizer for Quad-Band Multi-Standard Mobile Broadcasting Tuners in 0.18-μm CMOS

  • Shin, Jae-Wook;Kim, Jong-Sik;Kim, Seung-Soo;Shin, Hyun-Chol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.267-273
    • /
    • 2007
  • A fractional-N frequency synthesizer supports quadruple bands and multiple standards for mobile broadcasting systems. A novel linearized coarse tuned VCO adopting a pseudo-exponential capacitor bank structure is proposed to cover the wide bandwidth of 65%. The proposed technique successfully reduces the variations of KVCO and per-code frequency step by 3.2 and 2.7 times, respectively. For the divider and prescaler circuits, TSPC (true single-phase clock) logic is extensively utilized for high speed operation, low power consumption, and small silicon area. Implemented in $0.18-{\mu}m$ CMOS, the PLL covers $154{\sim}303$ MHz (VHF-III), $462{\sim}911$ MHz (UHF), and $1441{\sim}1887$ MHz (L1, L2) with two VCO's while dissipating 23 mA from 1.8 V supply. The integrated phase noise is 0.598 and 0.812 degree for the integer-N and fractional-N modes, respectively, at 750 MHz output frequency. The in-band noise at 10 kHz offset is -96 dBc/Hz for the integer-N mode and degraded only by 3 dB for the fractional-N mode.

Implementation of 234.7 MHz Mixed Mode Frequency Multiplication & Distribution ASIC (234.7 MHz 혼합형 주파수 체배 분배 ASIC의 구현)

  • 권광호;채상훈;정희범
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.929-935
    • /
    • 2003
  • An analog/digital mixed mode ASIC for network synchronization of ATM switching system has been designed and fabricated. This ASIC generates a 234.7/46.94 ㎒ system clock and 77.76/19.44 ㎒ user clock using 46.94 ㎒ transmitted clocks from other systems. It also includes digital circuits for checking and selecting of the transmitted clocks. For effective ASIC design, full custom technique is used in 2 analog PLL circuits design, and standard cell based technique is used in digital circuit design. Resistors and capacitors for analog circuits are specially designed which can be fabricated in general CMOS technology, so the chip can be implemented in 0.8$\mu\textrm{m}$ digital CMOS technology with no expensive. Testing results show stable 234.7 ㎒ and 19.44 ㎒ clocks generation with each 4㎰ and 17㎰ of low ms jitter.

Implementation of 1.9GHz RF Frequency Synthesizer for USN Sensor Nodes (USN 센서노드용 1.9GHz RF 주파수합성기의 구현)

  • Kang, Ho-Yong;Kim, Nae-Soo;Chai, Sang-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.5
    • /
    • pp.49-54
    • /
    • 2009
  • This paper describes implementation of the 1.9GHz RF frequency synthesizer with $0.18{\mu}m$ silicon CMOS technology being used as an application of the USN sensor node transceiver modules. To get good performance of speed and noise, design of the each module like VCO, prescaler, 1/N divider, fractional divider with ${\Sigma }-{\Delta}$ modulator, and common circuits of the PLL has been optimized. Especially to get good performance of speed, power consumption, and wide tuning range, N-P MOS core structure has been used in design of the VCO. The chip area including pads for testing is $1.2{\times}0.7mm^2$, and the chip area only core for IP in SoC is $1.1{\times}0.4mm^2$. The test results show that there is no special spurs except -63.06dB of the 6MHz reference spurs in the PLL circuitry. There is good phase noise performance like -116.17dBc/Hz in 1MHz offset frequency.

High-speed CMOS Frequency Divider with Inductive Peaking Technique

  • Park, Jung-Woong;Ahn, Se-Hyuk;Jeong, Hye-Im;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.309-314
    • /
    • 2014
  • This work proposes an integrated high frequency divider with an inductive peaking technique implemented in a current mode logic (CML) frequency divider. The proposed divider is composed with a master-slave flip-flop, and the master-slave flip-flop acts as a latch and read circuits which have the differential pair and cross-coupled n-MOSFETs. The cascode bias is applied in an inductive peaking circuit as a current source and the cascode bias is used for its high current driving capability and stable frequency response. The proposed divider is designed with $0.18-{\mu}m$ CMOS process, and the simulation used to evaluate the divider is performed with phase-locked loop (PLL) circuit as a feedback circuit. A divide-by-two operation is properly performed at a high frequency of 20 GHz. In the output frequency spectrum of the PLL, a peak frequency of 2 GHz is obtained witha divide-by-eight circuit at an input frequency of 250 MHz. The reference spur is obtained at -64 dBc and the power consumption is 13 mW.

The Design of a Low Power and Wide Swing Charge Pump Circuit for Phase Locked Loop (넓은 출력 전압 범위를 갖는 위상동기루프를 위한 저전압 Charge Pump 회로 설계)

  • Pu, Young-Gun;Ko, Dong-Hyun;Kim, Sang-Woo;Park, Joon-Sung;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.44-47
    • /
    • 2008
  • In this paper, a new circuit is proposed to minimize the charging and discharging current mismatch in charge pump for UWB PLL application. By adding a common-gate and a common-source amplifier and building the feedback voltage regulator, the high driving charge pump currents are accomplished. The proposed circuit has a wide operation voltage range, which ensures its good performance under the low power supply. The circuit has been implemented in an IBM 0.13um CMOS technology with 1.2V power supply. To evaluate the design effectiveness, some comparisons have been conducted against other circuits in the literature.

A 3.1 to 5 GHz CMOS Transceiver for DS-UWB Systems

  • Park, Bong-Hyuk;Lee, Kyung-Ai;Hong, Song-Cheol;Choi, Sang-Sung
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.421-429
    • /
    • 2007
  • This paper presents a direct-conversion CMOS transceiver for fully digital DS-UWB systems. The transceiver includes all of the radio building blocks, such as a T/R switch, a low noise amplifier, an I/Q demodulator, a low pass filter, a variable gain amplifier as a receiver, the same receiver blocks as a transmitter including a phase-locked loop (PLL), and a voltage controlled oscillator (VCO). A single-ended-to-differential converter is implemented in the down-conversion mixer and a differential-to-single-ended converter is implemented in the driver amplifier stage. The chip is fabricated on a 9.0 $mm^2$ die using standard 0.18 ${\mu}m$ CMOS technology and a 64-pin MicroLead Frame package. Experimental results show the total current consumption is 143 mA including the PLL and VCO. The chip has a 3.5 dB receiver gain flatness at the 660 MHz bandwidth. These results indicate that the architecture and circuits are adaptable to the implementation of a wideband, low-power, and high-speed wireless personal area network.

  • PDF

A Study on the Implementation and Performance Analysis of the Digital Frequency Synthesizer Using the Clock Counting Method (클럭주파수 합성방식을 이용한 디지틀 주파수 합성기의 구성 및 성능에 관한 연구)

  • 장은영;정용주;김원후
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.4
    • /
    • pp.338-347
    • /
    • 1989
  • In this paper, the digital frequency synthesizer with the clock ccunting method is designed and implemented to increase the performace of the digital frequency synthesizer with pahse accumulating method which was developed before. Unlike an phase accumulating method, clock countind method is supplied a continually changeable clock frequency with PLL(Phase Locked Loop) and allocated a fixed phase step with N-ary counter. Form the experimenta results, it is confirmed that any periodic distorition phenomena are disappeared, and truncation harmonics are more reduced. But the output bandwidths are decreased in inverse proportion to the counter counting number and the circuits are somewhat complex than phase accumulating method.

  • PDF

Double-Frequency Jitter in Chain Master-Slave Clock Distribution Networks: Comparing Topologies

  • Piqueira Jose Roberto Castilho;Caligares Andrea Zaneti
    • Journal of Communications and Networks
    • /
    • v.8 no.1
    • /
    • pp.8-12
    • /
    • 2006
  • Master-slave (M-S) strategies implemented with chain circuits are the main option in order to distribute clock signals along synchronous networks in several telecommunication and control applications. Here, we study the two types of masterslave chains: Without clock feedback, i.e., one-way master-slave (OWMS) and with clock feedback, i.e., two-way master-slave (TWMS) considering the slave nodes as second-order phase-locked loops (PLL) for several types of loop low-pass filters.