• Title/Summary/Keyword: PL spectra

Search Result 372, Processing Time 0.022 seconds

Comparison of In-situ Er-doped GaN with Er-implanted GaN Using Photoluminescence and Photoluminescence Excitation Spectroscope (In situ Er 도핑된 GaN와 Er이 이온 주입된 GaN의 PL과 PLE 비교에 대한 연구)

  • 김현석;성만영;김상식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.89-96
    • /
    • 2003
  • Photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopy have been performed at 6 K on the 1540 nm $^4$I$\_$(13/2)/\longrightarrow$^4$I$\_$(15/2)/ emission of Er$\^$+3/ in in situ Er-doped GaN The PL and PLE spectra of in situ Er-doped GaN are compared with those of Er-implanted GaN in this study. The lineshapes of the broad PLE absorption bands and the broad PL bands in the spectra of the in situ Er-doped GaN are similar to those in Er-doped glass rather than in the Er-implanted GaN. The PL spectra of this in situ Er-doped GaN are independent of excitation wavelength and their features are significantly different from the site-selective PL spectra of the Er-implanted GaN. These PL and PLE studies reveal that a single type of Er$\^$3+/ sites is present in the in situ Er-doped GaN and these Er sites are different from those observed in the Er-implanted GaN. In addition, the comparison of the PL single strength illustrates that the excitation of Er$\^$3+/ sites through the energy absorption of defects in Er-implanted GaN.

Photoluminescence Characterization of Halide Perovskite Films according to Measuring Conditions (페로브스카이트 할로겐화물 박막의 발광 측정 조건에 따른 특성 분석)

  • Cho, Hyeonah;Lee, Seungmin;Noh, Jun Hong
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.419-424
    • /
    • 2022
  • Halide perovskite solar cells (PSCs) have improved rapidly over the past few years, and research on the optoelectrical properties of halide perovskite thin films has grown as well. Among the characterization techniques, photoluminescence (PL), a method of collecting emitted photons to evaluate the properties of materials, is widely applied to evaluate improvements in the performance of PSCs. However, since only photons emitted from the film in the escape cone are included, the photons collected in PL are a small fraction of the total photons emitted from the film. Unlike PSCs power conversion efficiency, PL measuring methods have not been standardized, and have been evaluated in a variety of ways. Thus, an in-depth study is needed of the methods used to evaluate materials using PL spectra. In this study, we examined the PL spectra of the perovskite light harvesting layer with different measurement protocols and analyzed the features. As the incident angle changed, different spectra were observed, indicating that the PL emission spectrum can depend on the measuring method, not the material. We found the intensity and energy of the PL spectra changes were due to the path of the emitted photons. Also, we found that the PL of halide perovskite thin films generally contains limited information. To solve this problem, the emitted photons should be collected using an integrating sphere. The results of this study suggest that the emission spectrum of halide perovskite films should be carefully interpreted in accordance with PL measuring method, since PL data is mostly affected by the method.

Properties of Silicon for Photoluminescence

  • Baek, Dohyun
    • Applied Science and Convergence Technology
    • /
    • v.23 no.3
    • /
    • pp.113-127
    • /
    • 2014
  • For more than five decades, silicon has dominated the semiconductor industry that supports memory devices, ICs, photovoltaic devices, etc. Photoluminescence (PL) is an attractive silicon characterization technique because it is contactless and provides information on bulk impurities, defects, surface states, optical properties, and doping concentration. It can provide high resolution spectra, generally with the sample at low temperature and room-temperature spectra. The photoluminescence properties of silicon at low temperature are reviewed and discussed in this study. In this paper, silicon bulk PL spectra are shown in multiple peak positions at low temperature. They correspond with various impurities such as In, Al, and Be, phonon interactions, for example, acoustical phonons and optical phonons, different exciton binding energies for boron and phosphorus, dislocation related PL emission peak lines, and oxygen related thermal donor PL emissions.

Photoluminescence from silicon nanocrystals in silicon ion implanted SiO2 layers (실리콘 이온주입 SiO2층의 나노결정으로 부터의 광루미네센스)

  • Kim, Kwang-Hee;Oh, Hang-Seok;Jang, Tae-Su;Kwon, Young-Kyu;Lee, Yong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.183-190
    • /
    • 2002
  • Photoluminescence(PL) properties of $Si^+$-implanted $SiO_2$ film, which was thermally grown on c-Si substrate, is reported. We have compared room temperature photoluminescence (PL) spectra of the samples which was made in several kinds of implantation, subsequent annealing and $SiO_2$ film thickness. XRD data was correlated with the PL spectra. Silicon nanocrystals in $SiO_2$ film is considered as the origin of the photoluminescence. PL spectra was investigated after wet etching of the $SiO_2$ film by using BOE (Buffered Oxide Etchant) at every one minute. PL peak wavelength was varied as the etching is proceeded. These results indicate that the quantity and the distribution of dominant size of Si nanocrystals in $SiO_2$ film seem to have a direct effect on PL spectrum.

Comparative study of photoluminescences for Zn-polar and O-polar faces of single-crystalline ZnO bulks

  • O, Dong-Cheol;Kim, Dong-Jin;Bae, Chang-Hwan;Gu, Gyeong-Wan;Park, Seung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.39-39
    • /
    • 2010
  • The authors have an extensive study of photoluminescences for Zn-polar and O-polar faces of single-crystalline ZnO bulks. In the photoluminescence (PL) spectra at 10 K, Zn-polar and O-polar faces show a common emission feature: neutral donor-bound excitons and their longitudinal-optical (LO) phonon replicas are strong, and free excitons are very weak. However, in the PL spectra at room temperature (RT), Zn-polar and O-polar faces show extremely different emission characteristics: the emission intensity of Zn-polar face is 30 times larger than that of O-polar face, and the band edge of Zn-polar face is 33 meV red-shifted from that of O-polar face. The temperature dependence of photoluminescence indicates that the PL spectra at RT are closely associated with free excitons and their phonon-assisted annihilation processes. As a result, it is found that the RT PL spectra of Zn-polar face is dominated by the first-order LO phonon replica of A free excitons, while that of O-polar face is determined by A free excitons. This is ascribed that Zn-polar face has larger exciton-phonon coupling strength than O-polar face.

  • PDF

Luminescence Properties of InAlAs/AlGaAs Quantum Dots Grown by Modified Molecular Beam Epitaxy

  • Kwon, Se Ra;Ryu, Mee-Yi;Song, Jin Dong
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.387-391
    • /
    • 2014
  • Self-assembled InAlAs/AlGaAs quantum dots (QDs) on GaAs substrates were grown by using modified molecular epitaxy beam in Stranski-Krastanov method. In order to study the structural and optical properties of InAlAs/AlGaAs QDs, atomic force microscopy (AFM) and photoluminescence (PL) measurements are conducted. The size and uniformity of QDs have been observed from the AFM images. The average widths and heights of QDs are increased as the deposition time increases. The PL spectra of QDs are composed of two peaks. The PL spectra of QDs were analyzed by the excitation laser power- and temperature-dependent PL, in which two PL peaks are attributed to two predominant sizes of QDs.

Ohmic Contact Effect and Electrical Characteristics of ITO Thin Film Depending on SiOC Insulator (SiOC 절연박막 특성에 의존하는 ITO 투명박막의 전기적인 특성과 오믹접합의 효과)

  • Oh, Teresa
    • Korean Journal of Materials Research
    • /
    • v.25 no.7
    • /
    • pp.352-357
    • /
    • 2015
  • To research the characteristics of ITO film depending on a polarity of SiOC, specimens of ITO/SiOC/glass with metal-insulator-substrates (MIS) were prepared using a sputtering system. SiOC film with 17 sccm of oxygen flow rate became a non-polarity with low surface energy. The PL spectra of the ITO films deposited with various argon flow rates on SiOC film as non-polarity were found to lead to similar formations. However, the PL spectra of ITO deposited with various argon flow rates on SiOC with polarity were seen to have various features owing to the chemical reaction between ITO and the polar sites of SiOC. Most ITO/SiOC films non-linearly showed the Schottky contacts and current increased. But the ITO/SiOC film with a low current demonstrated an Ohmic contact.

CharacteristicProperties of Low-k Thin Film Deposited by Sputtering (스퍼터링에 의한 Low-k 박막의 특성)

  • Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3160-3164
    • /
    • 2012
  • To obtain available process at low temperature, SiOC thin film was prepared with various flow rates by using the rf magnetron sputtering, and AZO thin film was also deposited on SiOC film by rf magnetron sputtering system. The optical electrical properties of the SiOC film and SiOC/AZO were analyzed by the uv visible spectrometer and PL spectra. SiOC film on n type Si showed various type emission according to the deposition condition. The SiOC film showed the blue shift with increasing the thickness in PL spectra. AZO/SiOC/Si film had a broad emission characteristic, which is enhanced the efficiency in solar cell.

Excitonic transitions and dynamics in front and back surfaces of ZnO films grown by plasma-assisted molecular beam epitaxy

  • Lee, Seon-Gyun;Go, Hang-Ju;Yao, Takafumi;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.119-119
    • /
    • 2010
  • We report strong exciton transition and exciton-phonon couplings in photoluminescence (PL) of ZnO thin films grown on MgO/sapphire (buffer/substrate) by plasma-assisted molecular beam epitaxy. The PL spectra at 10 K showed the intensity of the dominant emission, donor-bound exciton transition of front surface (top surface, the latter part in growth) is found to be about 100 times higher than that of back surface (in-depth bottom area, the initial part), while the room temperature PL spectra showed dominant contributions from the free exciton emissions and phonon-replicas of free excitons for front surface and back surface, respectively, It could be attributed to the strong contributions of exciton-phonon coupling. Time resolved PL spectra reveal that the life time of exciton recombination from the front surface are longer than those from back surface. This is most probably due to the fact that reduction of non-radiative recombination in the front surface. This investigation indicates that the existence of native defects or trap centers which can be reduced by the proper initial condition in growth and the exciton-phonon interaction couplings play an important role in optical properties and crystal quality of ZnO thin films.

  • PDF

Resonant inelastic X-ray scattering of tantalum double perovskite structures

  • Oh, Ju Hyun;Kim, Jung Ho;Jeong, Jung Hyun;Chang, Seo Hyoung
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1225-1229
    • /
    • 2018
  • In this paper, we investigated the electronic structures and defect states of $SrLaMgTaO_6$ (SLMTO) double perovskite structures by using resonant inelastic x-ray scattering. Recently, $Eu^{3+}$ doped SLMTO red phosphors have been vigorously investigated due to their higher red emission efficiency compared to commercial white light emitting diodes (W-LED). However, a comprehensive understanding on the electronic structures and defect states of host SLMTO compounds, which are specifically related to the W-LED and photoluminescence (PL), is far from complete. Here, we found that the PL spectra of SLMTO powder compounds sintered at a higher temperature, $1400^{\circ}C$, were weaker in the blue emission regions (at around 400 nm) and became enhanced in near infrared (NIR) regions compared to those sintered at $1200^{\circ}C$. To elucidate the difference of the PL spectra, we performed resonant inelastic x-ray spectroscopy (RIXS) at Ta L-edge. Our RIXS result implies that the microscopic origin of different PL spectra is not relevant to the Ta-related defects and oxygen vacancies.