DOI QR코드

DOI QR Code

Ohmic Contact Effect and Electrical Characteristics of ITO Thin Film Depending on SiOC Insulator

SiOC 절연박막 특성에 의존하는 ITO 투명박막의 전기적인 특성과 오믹접합의 효과

  • Oh, Teresa (Department of Semiconductor Engineering, Cheongju University)
  • Received : 2015.05.14
  • Accepted : 2015.07.02
  • Published : 2015.07.27

Abstract

To research the characteristics of ITO film depending on a polarity of SiOC, specimens of ITO/SiOC/glass with metal-insulator-substrates (MIS) were prepared using a sputtering system. SiOC film with 17 sccm of oxygen flow rate became a non-polarity with low surface energy. The PL spectra of the ITO films deposited with various argon flow rates on SiOC film as non-polarity were found to lead to similar formations. However, the PL spectra of ITO deposited with various argon flow rates on SiOC with polarity were seen to have various features owing to the chemical reaction between ITO and the polar sites of SiOC. Most ITO/SiOC films non-linearly showed the Schottky contacts and current increased. But the ITO/SiOC film with a low current demonstrated an Ohmic contact.

Keywords

References

  1. G. Kenugapal and S. J. Kim, Curr. Appl. Phys., 11, S381 (2011). https://doi.org/10.1016/j.cap.2011.03.030
  2. S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa and M. Kawasaki1, Appl. Phys. Lett., 93, 123309 (2008). https://doi.org/10.1063/1.2989125
  3. W. T. Chen, S. Y. Lo, S. C. Kao, H. W. Zan, C. C. Tsai, J. H. Lin, C. H. Fang and C. C. Lee, IEEE Electron. Dev. Lett., 32, 1552 (2011). https://doi.org/10.1109/LED.2011.2165694
  4. S. W. Tsao, T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Chen, C. T. Tsai, Y. J. Kuo, Y. C. Chen and W. C. Wub, Solid State Electronics, 54, 1497 (2010). https://doi.org/10.1016/j.sse.2010.08.001
  5. J. Maserjian, J. Vac. Sci. Technol., 11, 996 (1974). https://doi.org/10.1116/1.1318719
  6. D. Kot, T. Mchedlidze, G. Kissinger and W. von Ammonc, ECS J. Sci. Technol., 2(1), P9 (2013).
  7. J. S. Park, Maeng, W. J. Maeng, H. S. Kim and J. S. Park, Thin Solid Films, 520, 1679 (2012). https://doi.org/10.1016/j.tsf.2011.07.018
  8. K. Nomura, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, Appl. Phys. Lett., 93, 192107 (2008). https://doi.org/10.1063/1.3020714
  9. O. Mitrofanov and M. Mantra, J. Appl. Phys., 95, 6414 (2004). https://doi.org/10.1063/1.1719264
  10. M. E. Lopes, H. L. Gomes, M. C. R. Medeiros, P. Barquinha, L. Pereira, E. Fortunato, R. Martins and I. Ferreira, Appl. Phys. Lett., 95, 063502 (2009). https://doi.org/10.1063/1.3187532
  11. J. Maserjian and N. Zamani, Appl. Phys. Lett., 53, 559 (1982).
  12. J. G. Simmons, Phys. Rev., 155, 657 (1967). https://doi.org/10.1103/PhysRev.155.657
  13. T. Oh, IEEE Trans. Nanotechnol., 5, 23 (2006). https://doi.org/10.1109/TNANO.2005.858591
  14. J. Frenkel, Phys. Rev., 54, 647 (1938). https://doi.org/10.1103/PhysRev.54.647
  15. T. Oh and C. K. Choi, J. Korean Phys. Soc., 56, 1150 (2010). https://doi.org/10.3938/jkps.56.1150