DOI QR코드

DOI QR Code

Photoluminescence Characterization of Halide Perovskite Films according to Measuring Conditions

페로브스카이트 할로겐화물 박막의 발광 측정 조건에 따른 특성 분석

  • Cho, Hyeonah (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Lee, Seungmin (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Noh, Jun Hong (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 조현아 (고려대학교 건축사회환경공학부) ;
  • 이승민 (고려대학교 건축사회환경공학부) ;
  • 노준홍 (고려대학교 건축사회환경공학부)
  • Received : 2022.09.01
  • Accepted : 2022.09.27
  • Published : 2022.10.27

Abstract

Halide perovskite solar cells (PSCs) have improved rapidly over the past few years, and research on the optoelectrical properties of halide perovskite thin films has grown as well. Among the characterization techniques, photoluminescence (PL), a method of collecting emitted photons to evaluate the properties of materials, is widely applied to evaluate improvements in the performance of PSCs. However, since only photons emitted from the film in the escape cone are included, the photons collected in PL are a small fraction of the total photons emitted from the film. Unlike PSCs power conversion efficiency, PL measuring methods have not been standardized, and have been evaluated in a variety of ways. Thus, an in-depth study is needed of the methods used to evaluate materials using PL spectra. In this study, we examined the PL spectra of the perovskite light harvesting layer with different measurement protocols and analyzed the features. As the incident angle changed, different spectra were observed, indicating that the PL emission spectrum can depend on the measuring method, not the material. We found the intensity and energy of the PL spectra changes were due to the path of the emitted photons. Also, we found that the PL of halide perovskite thin films generally contains limited information. To solve this problem, the emitted photons should be collected using an integrating sphere. The results of this study suggest that the emission spectrum of halide perovskite films should be carefully interpreted in accordance with PL measuring method, since PL data is mostly affected by the method.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (grant nos. NRF-2020R1A2C3009115, NRF-2020R1A4A2002161) and a Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Trade, Industry, and Energy (grant nos. 20214000000680).

References

  1. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, Nat. Mater., 13, 897 (2014). https://doi.org/10.1038/nmat4014
  2. N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Nature, 517, 476 (2015). https://doi.org/10.1038/nature14133
  3. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Science, 348, 1234 (2015). https://doi.org/10.1126/science.aaa9272
  4. D. Bi, C. Yi, J. Luo, J.-D. Decoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt and M. Gratzel, Nat. Energy, 1, 16142 (2016). https://doi.org/10.1038/nenergy.2016.142
  5. E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T.-Y. Yang, J. H. Noh and J. Seo, Nature, 567, 511 (2019). https://doi.org/10.1038/s41586-019-1036-3
  6. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin and J. You, Nat. Photonics, 13, 460 (2019). https://doi.org/10.1038/s41566-019-0398-2
  7. S. Lee, K. Choi, C. H. Min, M. Y. Woo and J. H. Noh, MRS Bulletin, 45, 439 (2020). https://doi.org/10.1557/mrs.2020.145
  8. M. J. Jeong, J. H. Lee, C. H. You, S. Y. Kim, S. Lee and J. H. Noh, Adv. Energy Mater., 12, 2200661 (2022). https://doi.org/10.1002/aenm.202200661
  9. M. J. Jeong, K. M. Yeom, S. J. Kim, E. H. Jung and J. H. Noh, Energy Environ. Sci., 14, 2419 (2021). https://doi.org/10.1039/D0EE03312J
  10. Y.-W. Jang, S. Lee, K. M. Yeom, K. Jeong, K. Choi, M. Choi and J. H. Noh, Nat. Energy, 6, 63 (2021). https://doi.org/10.1038/s41560-020-00749-7
  11. B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna, F. Auras, J. M. Richter, L. Yang, L. Dai, M. Alsari, X.-J. She, L. Liang, J. Zhang, S. Lilliu, P. Gao, H. J. Snaith, J. Wang, N. C. Greenham, R. H. Friend and D. Di, Nat. Photonics, 12, 783 (2018). https://doi.org/10.1038/s41566-018-0283-4
  12. O. Gunawan, S. R. Pae, D. M. Bishop, Y. Virgus, J. H. Noh, N. J. Jeon, Y. S. Lee, X. Shao, T. Todorov, D. B. Mitzi and B. Shin, Nature, 575, 151 (2019). https://doi.org/10.1038/s41586-019-1632-2
  13. Y. Chen, H. T. Yi, X. Wu, R. Haroldson, Y. N. Gartstein, Y. I. Rodionov, K. S. Tikhonov, A. Zakhidov, X. Y. Zhu and V. Podzorov, Nat. Commun., 7, 12253 (2016). https://doi.org/10.1038/ncomms12253
  14. S. Lee and J. H. Noh, J. Phys. Chem. C, 126, 9559 (2022).
  15. G. Yang, Z. Ren, K. Liu, M. Qin, W. Deng, H. Zhang, H. Wang, J. Liang, F. Ye, Q. Liang, H. Yin, Y. Chen, Y. Zhuang, S. Li, B. Gao, J. Wang, T. Shi, X. Wang, X. Lu, H. Wu, J. Hou, D. Lei, S. K. So, Y. Yang, G. Fang and G. Li, Nat. Photonics, 15, 681 (2021). https://doi.org/10.1038/s41566-021-00829-4
  16. J. J. Yoo, S. Wieghold, M. C. Sponseller, M. R. Chua, S. N. Bertram, N. T. P. Hartono, J. S. Tresback, E. C. Hansen, J.-P. Correa-Baena and V. Bulovic, Energy Environ. Sci., 12, 2192 (2019). https://doi.org/10.1039/C9EE00751B
  17. J. C. D. Mello, H. F. Wittmann and R. H. Friend, Adv. Mater., 9, 230 (1997). https://doi.org/10.1002/adma.19970090308
  18. M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe, J. M. Richter, M. Alsari, E. P. Booker, E. M. Hutter, A. J. Pearson, S. Lilliu, T. J. Savenije, H. Rensmo, G. Divitini, C. Ducati, R. H. Friend and S. D. Stranks, Nature, 555, 497 (2018). https://doi.org/10.1038/nature25989
  19. K. P. Goetz, A. D. Taylor, F. Paulus and Y. Vaynzof, Adv. Funct. Mater., 30, 1910004 (2020). https://doi.org/10.1002/adfm.201910004
  20. P. Loper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipic, S.-J. Moon, J.-H. Yum, M. Topic, S. D. Wolf and C. Ballif, J. Phys. Chem. Lett., 6, 66 (2015). https://doi.org/10.1021/jz502471h
  21. L. M. Pazos-Outon, T. P. Xiao and E. Yablonovitch, J. Phys. Chem. Lett., 9, 1703 (2018). https://doi.org/10.1021/acs.jpclett.7b03054
  22. V. Ganapati, M. A. Steiner and E. Yablonovitch, E. IEEE Journal of Photovoltaics, 6, 801 (2016). https://doi.org/10.1109/JPHOTOV.2016.2547580
  23. C. Cho, Y.-W. Jang, S. Lee, Y. Vaynzof, M. Choi, J. H. Noh and K. Leo, Sci. Adv., 7, eabj1363 (2021). https://doi.org/10.1126/sciadv.abj1363
  24. D. Luo, R. Su, W. Zhang, Q. Gong and R. Zhu, Nat. Rev. Mater., 5, 44 (2020).