Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.10.419

Photoluminescence Characterization of Halide Perovskite Films according to Measuring Conditions  

Cho, Hyeonah (School of Civil, Environmental and Architectural Engineering, Korea University)
Lee, Seungmin (School of Civil, Environmental and Architectural Engineering, Korea University)
Noh, Jun Hong (School of Civil, Environmental and Architectural Engineering, Korea University)
Publication Information
Korean Journal of Materials Research / v.32, no.10, 2022 , pp. 419-424 More about this Journal
Abstract
Halide perovskite solar cells (PSCs) have improved rapidly over the past few years, and research on the optoelectrical properties of halide perovskite thin films has grown as well. Among the characterization techniques, photoluminescence (PL), a method of collecting emitted photons to evaluate the properties of materials, is widely applied to evaluate improvements in the performance of PSCs. However, since only photons emitted from the film in the escape cone are included, the photons collected in PL are a small fraction of the total photons emitted from the film. Unlike PSCs power conversion efficiency, PL measuring methods have not been standardized, and have been evaluated in a variety of ways. Thus, an in-depth study is needed of the methods used to evaluate materials using PL spectra. In this study, we examined the PL spectra of the perovskite light harvesting layer with different measurement protocols and analyzed the features. As the incident angle changed, different spectra were observed, indicating that the PL emission spectrum can depend on the measuring method, not the material. We found the intensity and energy of the PL spectra changes were due to the path of the emitted photons. Also, we found that the PL of halide perovskite thin films generally contains limited information. To solve this problem, the emitted photons should be collected using an integrating sphere. The results of this study suggest that the emission spectrum of halide perovskite films should be carefully interpreted in accordance with PL measuring method, since PL data is mostly affected by the method.
Keywords
perovskite; perovskite solar cell; photoluminescence; absolute photoluminescence quantum yield;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y.-W. Jang, S. Lee, K. M. Yeom, K. Jeong, K. Choi, M. Choi and J. H. Noh, Nat. Energy, 6, 63 (2021).   DOI
2 Y. Chen, H. T. Yi, X. Wu, R. Haroldson, Y. N. Gartstein, Y. I. Rodionov, K. S. Tikhonov, A. Zakhidov, X. Y. Zhu and V. Podzorov, Nat. Commun., 7, 12253 (2016).   DOI
3 J. J. Yoo, S. Wieghold, M. C. Sponseller, M. R. Chua, S. N. Bertram, N. T. P. Hartono, J. S. Tresback, E. C. Hansen, J.-P. Correa-Baena and V. Bulovic, Energy Environ. Sci., 12, 2192 (2019).   DOI
4 K. P. Goetz, A. D. Taylor, F. Paulus and Y. Vaynzof, Adv. Funct. Mater., 30, 1910004 (2020).   DOI
5 V. Ganapati, M. A. Steiner and E. Yablonovitch, E. IEEE Journal of Photovoltaics, 6, 801 (2016).   DOI
6 D. Luo, R. Su, W. Zhang, Q. Gong and R. Zhu, Nat. Rev. Mater., 5, 44 (2020).
7 S. Lee, K. Choi, C. H. Min, M. Y. Woo and J. H. Noh, MRS Bulletin, 45, 439 (2020).   DOI
8 E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T.-Y. Yang, J. H. Noh and J. Seo, Nature, 567, 511 (2019).   DOI
9 Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin and J. You, Nat. Photonics, 13, 460 (2019).   DOI
10 M. J. Jeong, J. H. Lee, C. H. You, S. Y. Kim, S. Lee and J. H. Noh, Adv. Energy Mater., 12, 2200661 (2022).   DOI
11 M. J. Jeong, K. M. Yeom, S. J. Kim, E. H. Jung and J. H. Noh, Energy Environ. Sci., 14, 2419 (2021).   DOI
12 G. Yang, Z. Ren, K. Liu, M. Qin, W. Deng, H. Zhang, H. Wang, J. Liang, F. Ye, Q. Liang, H. Yin, Y. Chen, Y. Zhuang, S. Li, B. Gao, J. Wang, T. Shi, X. Wang, X. Lu, H. Wu, J. Hou, D. Lei, S. K. So, Y. Yang, G. Fang and G. Li, Nat. Photonics, 15, 681 (2021).   DOI
13 B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna, F. Auras, J. M. Richter, L. Yang, L. Dai, M. Alsari, X.-J. She, L. Liang, J. Zhang, S. Lilliu, P. Gao, H. J. Snaith, J. Wang, N. C. Greenham, R. H. Friend and D. Di, Nat. Photonics, 12, 783 (2018).   DOI
14 O. Gunawan, S. R. Pae, D. M. Bishop, Y. Virgus, J. H. Noh, N. J. Jeon, Y. S. Lee, X. Shao, T. Todorov, D. B. Mitzi and B. Shin, Nature, 575, 151 (2019).   DOI
15 S. Lee and J. H. Noh, J. Phys. Chem. C, 126, 9559 (2022).
16 J. C. D. Mello, H. F. Wittmann and R. H. Friend, Adv. Mater., 9, 230 (1997).   DOI
17 M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe, J. M. Richter, M. Alsari, E. P. Booker, E. M. Hutter, A. J. Pearson, S. Lilliu, T. J. Savenije, H. Rensmo, G. Divitini, C. Ducati, R. H. Friend and S. D. Stranks, Nature, 555, 497 (2018).   DOI
18 P. Loper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipic, S.-J. Moon, J.-H. Yum, M. Topic, S. D. Wolf and C. Ballif, J. Phys. Chem. Lett., 6, 66 (2015).   DOI
19 L. M. Pazos-Outon, T. P. Xiao and E. Yablonovitch, J. Phys. Chem. Lett., 9, 1703 (2018).   DOI
20 C. Cho, Y.-W. Jang, S. Lee, Y. Vaynzof, M. Choi, J. H. Noh and K. Leo, Sci. Adv., 7, eabj1363 (2021).   DOI
21 N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, Nat. Mater., 13, 897 (2014).   DOI
22 N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Nature, 517, 476 (2015).   DOI
23 D. Bi, C. Yi, J. Luo, J.-D. Decoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt and M. Gratzel, Nat. Energy, 1, 16142 (2016).   DOI
24 W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Science, 348, 1234 (2015).   DOI