• 제목/요약/키워드: Oxidative damage

검색결과 1,489건 처리시간 0.032초

스피루리나 에탄올 추출물의 신경세포 보호활성 (Neuroprotective Activity of Spirulina maxima Hot Ethanol Extract)

  • 류가희;마충제
    • 생약학회지
    • /
    • 제52권3호
    • /
    • pp.149-156
    • /
    • 2021
  • Excessive glutamate can cause oxidative stress in neuronal cells and this can be the reason for neurodegenerative disease. In this study, we investigated the protective effect of Spirulina maxima hot ethanol extract on mouse hippocampal HT22 cell of which glutamate receptor has no function. HT22 cells were pre-treated with S. maxima sample at a dose dependent manner (1, 10 and 100 ㎍/ml). After an hour, glutamate was treated. Cell viability, reactive oxygen species (ROS) accumulation, Ca2+ influx, decrease of mitochondrial membrane potential level and glutathione related assays were followed by then. S. maxima ethanol extract improved the cell viability by suppressing the ROS and Ca2+ formation, retaining the mitochondrial membrane potential level and protecting the activity of the antioxidant enzymes compared with group of vehicle-treated controls. These suggest that S. maxima may decelerate the neurodegeneration by attenuating neuronal damage and oxidative stress.

과도한 운동 스트레스에 대한 숙성생강 추출물의 방어효과 (Protective Effects of Aged Ginger Extracts on Excessive Exercise-induced Stress)

  • 최상윤;김경탁;유귀재;김성수
    • 한국자원식물학회지
    • /
    • 제34권4호
    • /
    • pp.362-367
    • /
    • 2021
  • 생강의 운동 스트레스에 대한 방어효과를 알아보기 위해 동결건조, 열풍건조, 숙성한 생강을 제조하여 추출물을 근육세포에 H2O2와 함께처리한 결과 생강을 숙성한 시료는 숙성하지 않은 시료에 비하여 우수한 근육세포 보호효과를 나타내었다. 또한 숙성생강 추출물을 마우스에 투여시 운동으로 인한 혈액내 LDH, lactate, GOT 증가를 억제시키는 경향을 나타내었다. 따라서 숙성생강을 섭취시 과도한 운동으로 인한 스트레스에 대한 방어효과를 기대할 수 있을 것으로 사료된다. 이러한 결과를 토대로, 향후 생강의 숙성 온도 및 시간에 따른 운동 스트레스 방어효과를 측정하여 가장 높은 활성을 나타내는 최적의 숙성 조건을 확립하는 연구를 진행할 예정이다.

Periplanetasin-2 Enhances the Antibacterial Properties of Vancomycin or Chloramphenicol in Escherichia coli

  • Lee, Heejeong;Hwang, Jae Sam;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권2호
    • /
    • pp.189-196
    • /
    • 2021
  • Periplanetasin-2 from cockroach exhibits broad-spectrum antimicrobial activity. The underlying antibacterial mechanisms rely on the stimulation of reactive oxygen species overproduction to induce apoptotic cell death. A promising strategy to increase the bioavailability of periplanetasin-2 involves reducing the dose through combination therapy with other antibacterials that show synergistic effects. Thus, the synergistic antibacterial activity of periplanetasin-2 with conventional antibacterial agents and its mechanisms was examined against Escherichia coli in this study. Among the agents tested, the combinations of periplanetasin-2 with vancomycin and chloramphenicol exhibited synergistic effects. Periplanetasin-2 in combination with vancomycin and chloramphenicol demonstrated antibacterial activity through the intracellular oxidative stress response. The combination with vancomycin resulted in the enhancement of bacterial apoptosis-like death, whereas the combination with chloramphenicol enhanced oxidative stress damage. These synergistic interactions of periplanetasin-2 can help broaden the spectrum of conventional antibiotics. The combination of antimicrobial peptides and conventional antibiotics is proposed as a novel perspective on treatments to combat severe bacterial infection.

Impaired Autophagic Flux in Glucose-Deprived Cells: An Outcome of Lysosomal Acidification Failure Exacerbated by Mitophagy Dysfunction

  • Eun Seong Hwang;Seon Beom Song
    • Molecules and Cells
    • /
    • 제46권11호
    • /
    • pp.655-663
    • /
    • 2023
  • Autophagy dysfunction is associated with human diseases and conditions including neurodegenerative diseases, metabolic issues, and chronic infections. Additionally, the decline in autophagic activity contributes to tissue and organ dysfunction and aging-related diseases. Several factors, such as down-regulation of autophagy components and activators, oxidative damage, microinflammation, and impaired autophagy flux, are linked to autophagy decline. An autophagy flux impairment (AFI) has been implicated in neurological disorders and in certain other pathological conditions. Here, to enhance our understanding of AFI, we conducted a comprehensive literature review of findings derived from two well-studied cellular stress models: glucose deprivation and replicative senescence. Glucose deprivation is a condition in which cells heavily rely on oxidative phosphorylation for ATP generation. Autophagy is activated, but its flux is hindered at the autolysis step, primarily due to an impairment of lysosomal acidity. Cells undergoing replicative senescence also experience AFI, which is also known to be caused by lysosomal acidity failure. Both glucose deprivation and replicative senescence elevate levels of reactive oxygen species (ROS), affecting lysosomal acidification. Mitochondrial alterations play a crucial role in elevating ROS generation and reducing lysosomal acidity, highlighting their association with autophagy dysfunction and disease conditions. This paper delves into the underlying molecular and cellular pathways of AFI in glucose-deprived cells, providing insights into potential strategies for managing AFI that is driven by lysosomal acidity failure. Furthermore, the investigation on the roles of mitochondrial dysfunction sheds light on the potential effectiveness of modulating mitochondrial function to overcome AFI, offering new possibilities for therapeutic interventions.

Ginseng total saponin attenuates myocardial injury via anti-oxidative and anti-inflammatory properties

  • Aravinthan, Adithan;Kim, Jong Han;Antonisamy, Paulrayer;Kang, Chang-Won;Choi, Jonghee;Kim, Nam Soo;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • 제39권3호
    • /
    • pp.206-212
    • /
    • 2015
  • Background: Ginseng total saponin (GTS) contains various ginsenosides. These ginsenosides are widely used for treating cardiovascular diseases in Asian communities. The aim of this study was to study the effects of GTS on cardiac injury after global ischemia and reperfusion (I/R) in isolated guinea pig hearts. Methods: Animals were subjected to normothermic ischemia for 60 minutes, followed by 120 minutes of reperfusion. GTS significantly increased aortic flow, coronary flow, and cardiac output. Moreover, GTS significantly increased left ventricular systolic pressure and the maximal rate of contraction ($+dP/dt_{max}$) and relaxation ($-dP/dt_{max}$). In addition, GTS has been shown to ameliorate electrocardiographic changes such as the QRS complex, QT interval, and RR interval. Results: GTS significantly suppressed the biochemical parameters (i.e., lactate dehydrogenase, creatine kinase-MB fraction, and cardiac troponin I levels) and normalized the oxidative stress markers (i.e., malondialdehyde, glutathione, and nitrite). In addition, GTS also markedly inhibits the expression of interleukin-$1{\beta}$ (IL-$1{\beta}$), IL-6, and nuclear factor-${\kappa}B$, and improves the expression of IL-10 in cardiac tissue. Conclusion: These data indicate that GTS mitigates myocardial damage by modulating the biochemical and oxidative stress related to cardiac I/R injury.

Caerulein으로 유발된 흰쥐의 급성 췌장염에 대한 가미청이탕(加味淸胰湯)의 효과 (Effects of GamiChungYi-tang on the Caerulein-induced Acute Pancreatitis in Rats)

  • 김성환;김인수;정덕윤;이영수
    • 동의생리병리학회지
    • /
    • 제27권5호
    • /
    • pp.644-649
    • /
    • 2013
  • In this study, we aimed to investigate the effect of GamiChungYi-tang(GCY-t) on caerulein-induced acute pancreatitis (AP). It is performed by detecting oxidative stress markers and observing histopathological examination. Thirty adult male rats(Sprague-Dawley) were divided into six groups as follows: normal (NOR,n=5), caerulein-induced (CON,n=5), caerulein+Cefotaxime Sodium(CT,n=5), caerulein+GCY-t (130 mg/kg, CHA,n=5), caerulein+GCY-t (260 mg/kg, CHB,n=5) and caerulein+GCY-t (520 mg/kg, CHC,n=5) groups. Pancreatic tissues of rats from all groups were removed for apoptosis and light, and electron microscopic examination. Blood of rats from all groups were collected for oxidative stress markers inspection and pathological examination. Pancreatic oxidative stress markers were evaluated by the measurements of leukocyte, serum amylase and platelet activating factor (PAF), Interleukin-6 (IL-6) levels were determined spectrophotometrically. CON group has a significant increase (p<0.05) in amylase compared with NOR, but CT and CHA, CHB, CHC groups reduced the levels of these enzyme. The levels of Platelet activating factor (PAF) were increased in CON compared with NOR, but decreased in CT and CHA, CHB, CHC groups compared with CON. Interleukin-6 (IL-6) levels were increased significantly in CON compared with NOR, but reduced in CT and CHA, CHB, CHC groups. In the observations of Optical microscopy and electron microscopy, The experimental groups showed the significant decreases in pancreatic tissue inflammation, edema, vacuolization, necrosis compared to the control group. After all, GCY-t is potentially capable of limiting pancreatic damage produced during AP by restoring the fine structure of acinar cells and tissue.

Protective Activity against Ionizing Radiation of Antioxidative Plants Indigenous to Korea

  • Jung, Myung-Sun;Kang, Kyoung-Ah;Zhang, Rui;Chae, Sung-Wook;Yoo, Byoung-Sam;Yang, Young-Taek;Lee, Nam-Ho;Park, Jae-Woo;Hyun, Jin-Won
    • Natural Product Sciences
    • /
    • 제12권1호
    • /
    • pp.1-7
    • /
    • 2006
  • We have screened the cytoprotective effect on ${\gamma}-ray$ radiation induced oxidative stress from forty one Korean plant extracts. Carpinus laxiflora (caulis), Quercus salicina (caulis), and Castanopsis cuspidata (caulis) were found to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and intracellular reactive oxygen species (ROS). As a result, extracts of three plants reduced cell death of Chinese hamster lung fibroblast (V79-4) cells induced by $H_2O_2$ treatment. In addition, these extracts protected cell death of V79-4 cells damaged by ${\gamma}-ray$ radiation. In addition, these extracts scavenged ROS generated by radiation. Taken together, the results suggest that Carpinus laxiflora, Quercus salicina, and Castanopsis cuspidata protect V79-4 cells against oxidative damage by radiation through scavenging ROS.

Acanthopanax sessiliflorus stem confers increased resistance to environmental stresses and lifespan extension in Caenorhabditis elegans

  • Park, Jin-Kook;Kim, Chul-Kyu;Gong, Sang-Ki;Yu, A-Reum;Lee, Mi-Young;Park, Sang-Kyu
    • Nutrition Research and Practice
    • /
    • 제8권5호
    • /
    • pp.526-532
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Acanthopanax sessiliflorus is a native Korean plant and used as a traditional medicine or an ingredient in many Korean foods. The free radical theory of aging suggests that cellular oxidative stress caused by free radicals is the main cause of aging. Free radicals can be removed by cellular anti-oxidants. MATERIALS/METHODS: Here, we examined the anti-oxidant activity of Acanthopanax sessiliflorus extract both in vitro and in vivo. Survival of nematode C. elegans under stress conditions was also compared between control and Acanthopanax sessiliflorus extract-treated groups. Then, anti-aging effect of Acanthopanax sessiliflorus extract was monitored in C. elegans. RESULTS: Stem extract significantly reduced oxidative DNA damage in lymphocyte, which was not observed by leaves or root extract. Survival of C. elegans under oxidative-stress conditions was significantly enhanced by Acanthopanax sessiliflorus stem extract. In addition, Acanthopanax sessiliflorus stem increased resistance to other environmental stresses, including heat shock and ultraviolet irradiation. Treatment with Acanthopanax sessiliflorus stem extract significantly extended both mean and maximum lifespan in C. elegans. However, fertility was not affected by Acanthopanax sessiliflorus stem. CONCLUSION: Different parts of Acanthopanax sessiliflorus have different bioactivities and stem extract have strong anti-oxidant activity in both rat lymphocytes and C. elegans, and conferred a longevity phenotype without reduced reproduction in C. elegans, which provides conclusive evidence to support the free radical theory of aging.

카드뮴으로 유발된 산화 스트레스에 대한 진피의 간세포 보호 및 항산화 효과 (Hepatocyte protection and antioxidant effect of Citri Unshius Pericarpium against cadmium-induced oxidative stress)

  • 노규표;변성희;정대화;이종록;박숙자;김상찬
    • 대한한의학방제학회지
    • /
    • 제28권4호
    • /
    • pp.327-337
    • /
    • 2020
  • Objective : Citri Unshius Pericarpium is the dried peel of mature fruit of Citrus unshiu Markovich and has been used to treat indigestion, vomiting, and removal of phlegm. This study investigated the hepatoprotective and antioxidant effect of CEE (Ethanol extract of Citri Unshius Pericarpium) in cadmium (CdCl2)-treated HepG2 cells. Methods : Component analysis of Citri Unshius Pericarpium was analyzed by UPLC with C18 column. Cell viability was determined by MTT assay. The enzyme activity of superoxide dismutase (SOD) and the level of reactive oxygen species (ROS) and reduced glutathione (GSH) were analyzed using commercially available kits. Results : Cadmium caused severe HepG2 cell death. Cadmium also increased ROS production, consistent with depletion of GSH and inhibition of the SOD enzyme. However, CEE treatment reduced cell death and relieved oxidative stress caused by cadmium toxicity. CEE lowered ROS levels and improved depletion of GSH levels. CEE also enhanced the enzymatic activity of SOD. In component analysis, hesperidin was the most abundant of the five marker compounds (Narigenin, Narigin, Narirutin, Hesperidin and Hesperidin), which assumes that hesperidin partially contributed to the antioxidant activity of CEE. Conclusion : These results suggested that CEE could be a potential substance to solve heavy metal-related health problems. In particular, inhibition of oxidative stress by CEE can be a way to treat liver damage caused by cadmium.

Extracts from the Red Algae Gracilaria vermiculophylla have Antioxidant Effects in Human Bone Marrow Mesenchymal Stem Cells

  • Jeong, Sin-Gu;Lee, Jae-Joon;Kim, Ho-Tae;Ahn, Min-Ji;Son, Hee-Kyoung;Lee, Jun Sik;Oh, Won Keun;Cho, Tae Oh;Cho, Goang-Won
    • 통합자연과학논문집
    • /
    • 제11권2호
    • /
    • pp.69-75
    • /
    • 2018
  • The red algae Gracilaria vermiculophylla is widely spread around seaside areas across the globe, and has been used as a food resource in Southeast Asian countries. Previous studies have shown that Gracilaria red algae extracts have beneficial antihypercholesterolemic, antioxidant, anti-inflammatory, and antimicrobial effects. In this study, we investigated the antioxidant effects of Gracilaria vermiculophylla extracts (GV-Ex) on human bone marrow mesenchymal stem cells (hBM-MSCs). The acetone and DMSO/ethanol solvents of the tested GV contain higher total flavonoid and polyphenolic contents that can strongly scavenge reactive oxygen species (ROS). Pre-treatment with GV-Ex protected hBM-MSCs against oxidative stress induced by hydrogen peroxide treatment. The protective effects of GV-Ex treatment were confirmed by MTT assay. The elevated levels of ROS in hBM-MSCs caused by hydrogen peroxide induced oxidative stress were significantly decreased by GV extract treatment. The levels of the antioxidant proteins superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), and catalase (CAT) were also restored or protected by GV-Ex treatment, suggesting that GV extracts moderate excess ROS levels and prevent cells from oxidative damage.