Browse > Article
http://dx.doi.org/10.22889/KJP.2021.52.3.149

Neuroprotective Activity of Spirulina maxima Hot Ethanol Extract  

Ryu, Gahee (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University)
Ma, Choong Je (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University)
Publication Information
Korean Journal of Pharmacognosy / v.52, no.3, 2021 , pp. 149-156 More about this Journal
Abstract
Excessive glutamate can cause oxidative stress in neuronal cells and this can be the reason for neurodegenerative disease. In this study, we investigated the protective effect of Spirulina maxima hot ethanol extract on mouse hippocampal HT22 cell of which glutamate receptor has no function. HT22 cells were pre-treated with S. maxima sample at a dose dependent manner (1, 10 and 100 ㎍/ml). After an hour, glutamate was treated. Cell viability, reactive oxygen species (ROS) accumulation, Ca2+ influx, decrease of mitochondrial membrane potential level and glutathione related assays were followed by then. S. maxima ethanol extract improved the cell viability by suppressing the ROS and Ca2+ formation, retaining the mitochondrial membrane potential level and protecting the activity of the antioxidant enzymes compared with group of vehicle-treated controls. These suggest that S. maxima may decelerate the neurodegeneration by attenuating neuronal damage and oxidative stress.
Keywords
Spirulina maxima; Glutamate toxicity; HT22 cell; Neuroprotection; Neurodegeneration; Antioxidant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Belay, A., Kato, T. and Ota, Y. (1996) Spirulina (Arthrospira): potential application as an animal feed supplement. J. App. Phycol. 8: 303-311.   DOI
2 Simpore, J., Zongo, F., Kabore, F., Dansou, D., Bere, A., Nikiema, J. B., Pignateli, S., Biondi, D. M., Ruberto, G. and Musumeci, S. (2005) Nutrition rehabilitation of HIV-infected and HIV-negative undernourished children utilizing spirulina. Ann. Nutr. Met. 49: 373-380.   DOI
3 Jung, Y. S., Weon, J. B., Yang, W. S., Ryu, G. and Ma, C. J. (2018) Neuroprotective effects of Magnoliae Flos extract in mouse hippocampal neuronal cells. Sci. Rep. 8: 9693.   DOI
4 Seo, I. J., Kim, K. J., Choi, J., Koh, E. J. and Lee, B. Y. (2018) Spirulina maxima extract reduces obesity through suppression of adipogenesis and activation of browning in 3T3-L1 cells and high-fat diet-induced obese mice. Nutrients 10: 712.   DOI
5 Wu, Q., Liu, L., Miron, A., Klimova, B., Wan, D. and Kuca, K. (2016) The antioxidant, immunomodulatory, and antiinflammatory activities of Spirulina: an overview. Arch. Toxicol. 90: 1817-1840.   DOI
6 Pabon, M. M., Jernberg, J. N., Morganti, J., Contreras, J., Hudson, C. E., Klein, R. L. and Bickford, P. C. (2012) A spirulina-enhanced diet provides neuroprotection in an α-synuclein model of Parkinson's disease. PLoS One 7: e45256.   DOI
7 Goodman, Y. and Mattson, M. P. (1994) Secreted forms of βamyloid precursor protein protect hippocampal neurons against amyloid β-peptide-induced oxidative injury. Exp. Neurol. 128: 1-12.   DOI
8 Pan, P., Xiaoting, W. and Dawei, L. (2018) The potential mechanism of mitochondrial dysfunction in septic cardiomyopathy. J. Int. Med. Res. 46: 2157-2169.   DOI
9 Deng, R. and Chow, T. J. (2010) Hypolipidemic, antioxidant, and anti-inflammatory activities of microalgae spirulina. Cardiovas. Ther. 28: 33-45.   DOI
10 Thaakur, S. and Sravanthi, R. (2010) Neuroprotective effect of Spirulina in cerebral ischemia-reperfusion injury in rats. J. Neu. Trans. 117: 1083-1091.   DOI
11 Carlberg, I. and Mannervik, B. (1985) Glutathione reductase. Met. Enzymol. 113: 484-490.   DOI
12 Koh, E. J., Kim, K. J., Choi, J., Kang, D. H. and Lee, B. Y. (2018) Spirulina maxima extract prevents cell death through BDNF activation against amyloid beta 1-42 (Aβ1-42) induced neurotoxicity in PC12 cells. Neurosci. Lett. 673: 33-38.   DOI
13 Gliyazova, N. S., Huh, E. Y. and Ibeanu, G. C. (2013) A novel phenoxy thiophene sulphonamide molecule protects against glutamate evoked oxidative injury in a neuronal cell model. BMC Neurosci. 14: 93.   DOI
14 Lee, H. Y. (2016) Cognitive enhancing activities of marine Spirulina maximum from ultrasonification extraction process. Res. J. Biotech. 11: 67-74.
15 Morais, L. C. S. L., Barbosa-Fihlo, J.M. and Almeida, R. N. (2003) Plants and bioactive compounds for the treatment of Parkinson's disease. Arqui. Brasil. Fitomed. Cienti. 1: 127-131.
16 Ahmad, M., Saleem, S., Ahmad, A. S., Yousuf, S., Ansari, M. A., Khan, M. B., Ishrat, T., Chaturvedi, R. K., Agrawal, A. K. and Islam, F. (2005) Ginkgo biloba affords dose-dependent protection against 6-hydroxydopamine-induced parkinsonism in rats: Neurobehavioural, neurochemical and immunohistochemical evidence. J. Neurochem. 93: 94-104.   DOI
17 Jeong, G. S., Byun, E., Li, B., Lee, D. S., An, R. B., and Kim, Y. C. (2010) Neuroprotective effects of constituents of the rood bark of Dictamnus dasycarpus in mouse hippocampal cells. Arch. Pharm. Res. 33: 1269-1275.   DOI
18 Jeong, G. S., Li, B., Lee, D. S., Kim, K. H., Lee, I. K., Lee, K. R. and Kim, Y. C. (2010) Cytoprotective and anti-inflammatory effects of spinasterol via the induction of heme oxygenase-1 in murine hippocampal and microglial cell lines. Int. Immunopharmacol. 10: 1587-1594.   DOI
19 Melo, A., Monteiro, L., Lima, R. M. F., De Oliveira, D. M., De Cerquerira, M. D. and El-Bacha, R. S. (2011) Oxidative stress in neurodegenerative diseases: Mechanisms and therapeutic perspectives. Oxid. Med. Cell. Longev. 2011: 467180.   DOI
20 Flohe, L. and Gunzler, W. A. (1984) Assays of glutathione peroxidase. Met. Enzymol. 105: 114-120, 1984.   DOI
21 Tietze, F. (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Ann. Biochem. 17: 502-522.   DOI
22 Tobaben, S., Grohm, J., Seiler, A., Conrad, M., Plesnila, N. and Culmsee, C. (2011) Bid-mediated mitochondrial damage is a key mechanism in glutamate-induced oxidative stress and AIF-dependent cell death in immortalized HT-22 hippocampal neurons. Cell Death & Diff. 18: 282-292.   DOI
23 Ha, J. S. and Park, S. S. (2006) Glutamate-induced oxidative stress but not cell death, is largely dependent upon extracellular calcium in mouse neuronal HT22 cells. Neurosci. Lett. 393: 165-169.   DOI
24 Henke, N., Albrecht, P., Bouchachia, I., Ryazantseva, M., Knoll, K., Lewerenz, J., Kaznacheyeva, E., Maher, P. and Methner, A. (2013) The plasma membrane channel ORAI1 mediates detrimental calcium influx caused by endogenous oxidative stress. Cell Death Dis.4: e470.   DOI
25 Kumar, S., Kain, V. and Sitasawad, S. L. (2012) High glucose-induced Ca2+ overload and oxidative stress contribute to apoptosis of cardiac cells through mitochondrial dependent and independent pathways. Biochim. Biophy. Acta - General Subjects 1820: 907-920.   DOI
26 Lee, H. Y., Ryu, G. H., Choi, W. Y., Yang, W. S., Lee, H. W. and Ma, C. J. (2018) Protective effect of water extracted Spirulina maxima on glutamate-induced neuronal cell death in mouse hippocampal HT22 cell. Pharmacogn. Mag. 14: 242-247.   DOI