• Title/Summary/Keyword: Oxidative damage

Search Result 1,489, Processing Time 0.031 seconds

The Protective Effect of Spirulina-derived Phycocyanin on Dermal Fibroblasts Induced by UV Rays (자외선으로 손상을 유도한 피부섬유아세포에서 스피룰리나 유래 피코시아닌의 보호 효과)

  • Yang, Jae Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.1249-1254
    • /
    • 2021
  • UV induce oxidative stress and increase matrix metalloproteinase (MMP) expression, resulting in skin aging. Thus, preventing skin damage from ultraviolet B (UVB)-induced skin damage can attenuate skin aging. Spirulina is comprised of prokaryotes a powerful antioxidant. This study aimed to investigate the photoprotective effects of spirulina-derived phycocyanin (PC) against UVB radiation using human skin fibroblast. As a results, PC showed no toxicity at concentrations of 5-40 ㎍/mL in terms of fibroblast viability. Survival rate of UVB-irradiated fibroblast incresased to 73.5% from 50.5% with PC treatment. UVB treatment increased MMP-1 and MMP-9 expression whereas PC treatment decreased it. The results indicate that PC might reduce or prevent skin aging by reducing UVB irradiation-induced skin wrinkles and free radicals.

Toosendan Fructus ameliorates the pancreatic damage through the anti-inflammatory activity in non-obese diabetic mice

  • Roh, Seong-Soo;Kim, Yong-Ung
    • The Korea Journal of Herbology
    • /
    • v.30 no.2
    • /
    • pp.1-9
    • /
    • 2015
  • Objectives : The present study was conducted to examine whether Toosendan Fructus has an ameliorative effect on diabetes-induced alterations such as oxidative stress and inflammation in the pancreas of non-obese diabetic (NOD) mice, a model of human type I diabetes. Methods : Extracts of Toosendan Fructus (ETF) were administered to NOD mice at three doses (50 mg/kg, 100 mg/kg and 200 mg/kg). Mice at 18 weeks of age were measured glucose tolerance using intraperitoneal glucose tolerance test. After 28 weeks of ETF treatment, glucose, total cholesterol (TC), triglyceride (TG), and proinflammatory cytokines in serum, western blot analyses and a histopathological examination in pancreas tissue, and on the onset of diabetes were investigated. Results : The results showed that levels of glucose, glucose tolerance, TC, TG, interferon-${\gamma}$, interleukin (IL)-1 ${\beta}$, IL-6, and IL-12 in serum were down-regulated, while IL-4, IL-10, SOD, and catalase significantly increased. In addition, ETF improved protein expression of proinflammatory mediaters (such as cyclooxygenase-2, and inducible nitric oxide synthase) and a proapoptotic protein (caspase-3) in the pancreatic tissue. Also, in the groups treated with ETF (100 mg/kg or 200 mg/kg), insulitis and infiltration of granulocytes were alleviated. Conclusions : Based on these results, the anti-diabetic effect of ETF may be due to its anti-inflammatory and antioxidant effect. Our findings support the therapeutic evidence for Toosendan Fructus ameliorating the development of diabetic pancreatic damage via regulating inflammation and apoptosis. Our future studies will be focused on the search for active compounds in these extracts.

Anti-Obesity and Inhibitory Effect of Lipid Accumulation of The Cone of Pinus rigida × Pinus taeda in 3T3-L1 Cells

  • Da-Yoon Lee;Tae-Won Jang;So-Yeon Han;Seo-Yoon Park;Woo-Jin Oh;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.55-55
    • /
    • 2023
  • With the COVID-19 pandemic, there is increasing interest in anti-obesity strategies. According to the National Statistical Office, the obesity rate in Korea was 38.3% in 2020 and 37.1% in 2021. Obesity is a risk factor for several severe diseases, including stroke, heart disease, type 2 diabetes, and certain types of cancer. Pinus rigida × Pinus taeda is a hybrid of Pinus rigida Mill and Pinus taeda Linn, and its cones are considered a by-product. Although previous studies have investigated their pharmacological effects on antioxidant activity and protection against oxidative DNA damage, few researchers have explored their potential as functional natural materials. Therefore, we evaluated the anti-obesity effects of the cone of ethyl acetate fraction of P. rigida × P. taeda (ERT), specifically its ability to inhibit lipid accumulation. Our analysis showed that ERT contains phytochemicals (catechin and caffeic acid) which are known to improve immune function and inhibit cell damage. ERT inhibited lipid droplet accumulation at the cellular levels through Oil Red O staining. Furthermore, ERT suppressed the expression of adipogenic transcription factors (PPARγ and CEBP/α) as well as downstream lipogenic target genes (FAS and SREBP-1) thereby inhibiting adipogenesis. ERT also down-regulated key adipogenic markers, including aP2α, while inducing the phosphorylation of AMPK. It has been reported that PPARγ and CEBP/α are expressed in the early stages of adipose differentiation, while SREBP-1 is expressed in the late stage. Therefore, our findings suggest that ERT activates AMPK signaling pathways, which inhibits adipogenic transcription factors (PPARγ, C/EBPα, and SREBP1) and lipogenic genes (FAS and aP2α), thereby blocking lipid accumulation and preventing obesity and related disorders. ERT showed potential as a new resource for developing a functional material for anti-obesity agents.

  • PDF

Changes in Lymphocyte DNA Damage and Antioxidant Status after Supplementing Propolis to Korean Smokers: A Placebo-Controlled, Double-Blind Cross-Over Trial (프로폴리스 섭취 후 흡연자의 임파구 DNA 손상도 및 항산화 상태의 변화: 이중맹검 교차 인체시험)

  • Kang, Myung-Hee;Lee, Hye-Jin;Kim, Mi-Kyung;Sung, Mi-Kyung;Kwon, O-Ran;Park, Yoo-Kyoung
    • Journal of Nutrition and Health
    • /
    • v.42 no.5
    • /
    • pp.442-452
    • /
    • 2009
  • Smoking has been known to exacerbate the initiation and propagation of oxidative stresses. Efforts have been made to reduce the smoking-induced oxidative stresses using commercial dietary supplements. Propolis is the resinous substance collected by bees from the leaf buds and bark of trees, especially poplar and conifer trees. In this trial, we examined whether a daily supplementation of 800 mg propolis can protect endogenous lymphocytic DNA damage and modulate antioxidative enzyme activities and the level of antioxidant vitamin in smokers using a placebo-controlled, doubleblinded cross-over trial. After two weeks of running-in period, 29 smokers (mean age 34.38 ${\pm}$ 1.73) received 6 tablets/day of either propolis or placebo pills for 4 weeks. After 2 weeks of washout period the subjects switched they pills for cross-over study. The degree of DNA damage (assessed by tail DNA, tail length and tail moment) was not significantly changed with propolis intake or placebo intake. Similarly, total antioxidant status (TAS) remained at the same level regardless of the treatment. Erythrocyte catalase, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), plasma vitamin C and tocopherol level did not differ before and after propolis treatment, and did not differ between treatments. Putting all these results together, we would suggest that it is still too early to claim that propolis possess antioxidative activities.

Neuroprotective Effects of Cirsium setidens, Pleurospermum kamtschaticumin, and Allium victorials Based on Antioxidant and p38 Phosphorylation Inhibitory Activities in SK-N-SH Neuronal Cells (SK-N-SH 신경세포내 항산화 효과와 p38 인산화 억제에 의한 곤드레, 누룩치 그리고 산마늘의 신경 보호 효과)

  • Chung, Mi Ja;Park, Yong Il;Kwon, Ki Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.3
    • /
    • pp.347-355
    • /
    • 2015
  • Oxidative stress is one of the key mechanisms involved in neuronal damage. Neuroprotective effects and underlying mechanisms of action of several wild vegetables, Cirsium setidens (CS), Pleurospermum kamtschaticumin (PK), and Allium victorials (AV), against oxidative stress induced by hydrogen peroxide in SK-N-SH cells were investigated. CS and AV up to $400{\mu}g/mL$ showed no detectable effects on cell viability of human SK-N-SH neuro-blastoma cells compared with control. Incubation of SK-N-SH cells with hydrogen peroxide resulted in significant induction of cell death and reaction oxygen species (ROS) production, whereas treatment of cells with CS and AV significantly reduced cell death and ROS production, respectively. Among the wild vegetables tested, CS and PK showed more effective DPPH radical scavenging activity than AV, whereas PK showed strong cytotoxicity in SK-N-SH cells compared with the control. CS showed much higher inhibitory effects on cell death and ROS generation against oxidative stress than AV. Thus, CS was selected for subsequent experiments. Ethyl acetate (EA), hexane, butanol, aqueous, and chloroform extracts from CS significantly inhibited cell death and ROS generation in SK-N-SH cells induced by oxidative stress. EA extract from CS (CS-EA) showed the highest DPPH radical-scavenging activity, intra-cellular ROS-scavenging activity, and neuroprotective effects. CS-EA attenuated apoptosis signal-regulating p38 activation by inhibiting phosphorylation. The findings suggest that CS-EA protects neuronal cells through antioxidant activity and inhibition of phosphorylation of p38 in brain neural cells.

Suppressive effects of ethanol extract of Aralia elata on UVB-induced oxidative stress in human keratinocytes (자외선 B를 조사한 인간유래각질세포에서 두릅순 에탄올추출물의 산화적 스트레스 억제효과)

  • Kwak, Chung Shil;Yang, Jiwon
    • Journal of Nutrition and Health
    • /
    • v.49 no.3
    • /
    • pp.135-143
    • /
    • 2016
  • Purpose: Ultraviolet (UV)-induced oxidative stress contributes to several adverse biological effects on skin. Many phenolic phytochemicals have been shown to have antioxidant properties and protect skin cells from UV-induced oxidative damage. In this study, we investigated whether or not Aralia elata (AE) has a protective effect against UVB-induced reactive oxygen species (ROS), ultimately leading to photoaging. Methods: Phenolic content of dried AE and antioxidant properties of AE extract in 70% ethanol weredetermined by measuring DPPH and ABTS radical scavenging activities and ferric reducing antioxidant power (FRAP). The effect of AE extract on cellular ROS generation and expression levels of oxidative stress-response proteins such as superoxide dismutase (SOD)-1, catalase, nuclear factor-erythroid 2-related factor (Nrf)-2, and heme oxygenase (HO)-1 in UVB-irradiated ($75mJ/cm^2$) human keratinocytes (HaCaT) were further determined by 2'-7'-dichlorofluoresceine diacetate assay and Western blotting, respectively. Results: The total phenolic and flavonoid contents of dried AE were 20.15 mg tannic acid/g and 18.75 mg rutin/g, respectively. The $IC_{50}$ of AE extract against DPPH radical was $98.5{\mu}g/mL$, and ABTS radical scavenging activity and FRAP upon treatment with $1,000{\mu}g/mL$ of AE extract were $41.8{\mu}g\;ascorbic\;acid\;(AA)\;eq./mL$ and $29.7{\mu}g\;AA\;eq./mL$,m respectively. Pretreatment with AE extract significantly reduced (p < 0.05) ROS generation compared to that in UVB-irradiated control HaCaT cells. Pretreatment with AE extract reversed reduction of Nrf-2 and SOD-1 protein expression and induction of HO-1 protein expression caused by UVB exposure in HaCaT cells, whereas it did not affect catalase expression. Conclusion: AE extract in 70% ethanol demonstrated a protective effect against UVB-induced oxidative stress and decreased expression of Nrf-2 and SOD-1 in human keratinocytes. These findings suggest that AE ethanol extract might have potential as a natural resource for a skin anti-photoaging product in the food and cosmetic industry.

Attenuation of Lipopolysaccharide-induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid Phosphate in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 lipopolysaccharide 자극에 의한 염증성 및 산화적 스트레스에 미치는 5-aminolevulinic acid phosphate의 영향)

  • Ji, Seon Yeong;Kim, Min Yeong;Hwangbo, Hyun;Lee, Hyesook;Hong, Su Hyun;Cha, Hee-Jae;Kim, Heui-Soo;Kim, Suhkmann;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.818-826
    • /
    • 2021
  • 5-Aminolevulinic acid phosphate (5-ALA-p) is a substance obtained by eluting 5-ALA (a natural delta amino acid) with aqueous ammonia, adding phosphoric acid to the eluate, and then adding acetone to confer properties suitable for use in photodynamic therapy applications. However, its pharmacological efficacy, including potential mechanisms of antioxidant and anti-inflammatory reactions, remains unclear. This study aimed to investigate the effects of 5-ALA-p on oxidative and inflammatory stresses in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Our data showed that 5-ALA-p significantly inhibited excessive phagocytic activity via LPS and attenuated oxidative stress in LPS-treated RAW 264.7 cells. Furthermore, 5-ALA-p improved mitochondrial biogenesis reduced by LPS, suggesting that 5-ALA-p restores mitochondrial damage caused by LPS. Additionally, 5-ALA-p significantly suppressed the release of nitric oxide (NO) and pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and IL-6, which are associated with the inhibition of inducible NO synthase and respective cytokine expression. Furthermore, 5-ALA-p reduced the nuclear translocation of nuclear factor-kappa B (NF-κB) and inhibited phosphorylation of mitogen-activated protein kinases (MAPKs), indicating that the anti-inflammatory effect of 5-ALA-p is mediated through the suppression of NF-κB and MAPK signaling pathways. Based on these results, 5-ALA-p may serve as a potential candidate to reduce inflammation and oxidative stress.

Analysis of the Stress Effects of Endocrine Disrupting Chemicals (EDCs) on Escherichia coli

  • Kim, Yeon-Seok;Min, Ji-Ho;Hong, Han-Na;Park, Ji-Hyun;Park, Kyeong-Seo;Gu, Man-Bock
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1390-1393
    • /
    • 2007
  • In this study, three of the representative EDCs, $17{\beta}$-estradiol, bisphenol A, and styrene, were employed to find their mode of toxic actions in E. coli. To accomplish this, four different stress response genes, recA, katG, fabA, and grpE genes, were used as a representative for DNA, oxidative, membrane, or protein damage, respectively. The expression levels of these four genes were quantified using a real-time RT-PCR after challenge with three different EDCs individually. Bisphenol A and styrene caused high-level expression of recA and katG genes, respectively, whereas $17{\beta}$-estradiol made no significant changes in expression of any of those genes. These results lead to the classification of the mode of toxic actions of EDCs on E. coli.

Protective Effect of Samul against Cisplatin in Primary Rat Organ of Corti Explant (시스플라틴 이독성에서 사물탕의 보호효과)

  • Park, Chan-Ny;Lee, Jeong-Han;Lee, Sang-Heon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.214-218
    • /
    • 2007
  • The water extracts of Samultang (Samul) has been used for treatment of ischemic heart and brain damage in Oriental traditional medicine. However, little is known about the mechanism by which the water extract of Samul rescues cells from oxidative damages in cisplatin-induced ototoxicity. Cisplatin is a widely used chemotherapeutic agent that is also highly ototoxic. This study was designed to investigate the protective effects of Samul on ciplatin-induced ototoxicity in HEI-OC1 auditory cells and organ of Corti explant culture. Cisplatin markedly decreased the viability of HEI-OC1 auditory cells. However, treatment of HEI-OC1 cells with Samul significantly reduced cisplatin-induced cell death and apoptotic characteristics through reduction of intracellular peroxide generation. Cisplatin induced cytotoxicity in isolated and cultured hair cell progenitors from postnatal rat cochleae. These progenitor cells are isolated from the lesser epithelial ridge (LER, or outer spiral sulcus cell) area of pre-plated neonatal rat cochlear segments. However, Samul completely protected the morphological changes of organ of Corti and LER. Taken together, these data suggest that the protective effects of the water extracts of Samul against cisplatin may be mediated by the reduction of intracellular peroxide generation.

Effects of Electrical Stimulation on Lipid Oxidation and Warmed-over Flavor of Precooked Roast Beef

  • Cheng, Jen-Hua;Ockerman, Herbert W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.2
    • /
    • pp.282-286
    • /
    • 2013
  • Many manufacturing processes damage the structure of meat products and this often contributes to lipid oxidation which could influence warmed-over flavor (WOF) in precooked beef that is reheated beef. Electrical stimulation causes contraction of muscles and improves tissue tenderization. The purpose of this study was to evaluate the rate of lipid oxidation or warmed-over flavor that could be affected by electrical stimulation of precooked roast beef after refrigerated storage and reheating. The results show that there was no significant difference between chemical compositions and cooking yields when comparing non-electrically stimulated and electrically stimulated roast beef. Moreover, electrical stimulation had no significant effect on oxidative stability and off-flavor problems of precooked roast beef as evaluated by thiobarbituric acid reactive substances (TBARS) and sensory test (warmed-over aroma and warmed-over flavor). However, there was an increased undesirable WOF and a decrease in tenderness for both ES and Non-ES treatments over refrigerated storage time. Electrical stimulation did cause reactions of amino acids or other compounds to decrease the desirable beef flavor in re-cooked meat.