Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.9.818

Attenuation of Lipopolysaccharide-induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid Phosphate in RAW 264.7 Macrophages  

Ji, Seon Yeong (Anti-Aging Research Center, Dong-eui University)
Kim, Min Yeong (Anti-Aging Research Center, Dong-eui University)
Hwangbo, Hyun (Anti-Aging Research Center, Dong-eui University)
Lee, Hyesook (Anti-Aging Research Center, Dong-eui University)
Hong, Su Hyun (Anti-Aging Research Center, Dong-eui University)
Cha, Hee-Jae (Department of Parasitology and Genetics, Kosin University College of Medicine)
Kim, Heui-Soo (Department of Biological Sciences, College of Natural Sciences, Pusan National University)
Kim, Suhkmann (Department of Chemistry, College of Natural Sciences, Pusan National University)
Choi, Yung Hyun (Anti-Aging Research Center, Dong-eui University)
Publication Information
Journal of Life Science / v.31, no.9, 2021 , pp. 818-826 More about this Journal
Abstract
5-Aminolevulinic acid phosphate (5-ALA-p) is a substance obtained by eluting 5-ALA (a natural delta amino acid) with aqueous ammonia, adding phosphoric acid to the eluate, and then adding acetone to confer properties suitable for use in photodynamic therapy applications. However, its pharmacological efficacy, including potential mechanisms of antioxidant and anti-inflammatory reactions, remains unclear. This study aimed to investigate the effects of 5-ALA-p on oxidative and inflammatory stresses in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Our data showed that 5-ALA-p significantly inhibited excessive phagocytic activity via LPS and attenuated oxidative stress in LPS-treated RAW 264.7 cells. Furthermore, 5-ALA-p improved mitochondrial biogenesis reduced by LPS, suggesting that 5-ALA-p restores mitochondrial damage caused by LPS. Additionally, 5-ALA-p significantly suppressed the release of nitric oxide (NO) and pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and IL-6, which are associated with the inhibition of inducible NO synthase and respective cytokine expression. Furthermore, 5-ALA-p reduced the nuclear translocation of nuclear factor-kappa B (NF-κB) and inhibited phosphorylation of mitogen-activated protein kinases (MAPKs), indicating that the anti-inflammatory effect of 5-ALA-p is mediated through the suppression of NF-κB and MAPK signaling pathways. Based on these results, 5-ALA-p may serve as a potential candidate to reduce inflammation and oxidative stress.
Keywords
5-Aminolevulinic acid phosphate; inflammation; MAPKs; $NF-{\kappa}B$; oxidative stress;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fu, P., Birukova, A. A., Xing, J., Sammani, S., Murley, J. S., Garcia, J. G., Grdina, D. J. and Birukov, K. G. 2009. Amifostine reduces lung vascular permeability via suppression of inflammatory signalling. Eur. Respir. J. 33, 612-624.   DOI
2 Brune, B., Dehne, N., Grossmann, N., Jung, M., Namgaladze, D., Schmid, T., von Knethen, A. and Weigert, A. 2013. Redox control of inflammation in macrophages. Antioxid. Redox Signal. 19, 595-637.   DOI
3 Buckman, J. F., Hernandez, H., Kress, G. J., Votyakova, T. V., Pal, S. and Reynolds, I. J. 2001. MitoTracker labeling in primary neuronal and astrocytic cultures: influence of mitochondrial membrane potential and oxidants. J. Neurosci. Methods 104, 165-176.   DOI
4 Omori, C., Motodate, R., Shiraki, Y., Chiba, K., Sobu, Y., Kimura, A., Nakaya, T., Kondo, H., Kurumiya, S., Tanaka, T., Yamamoto, K., Nakajima, M., Suzuki, T. and Hata, S. 2017. Facilitation of brain mitochondrial activity by 5-aminolevulinic acid in a mouse model of Alzheimer's disease. Nutr. Neurosci. 20, 538-546.   DOI
5 Rehani, P. R., Iftikhar, H., Nakajima, M., Tanaka, T., Jabbar, Z. and Rehani, R. N. 2019. Safety and mode of action of diabetes medications in comparison with 5-aminolevulinic acid (5-ALA). J. Diabetes Res. 2019, 4267357.
6 Rodriguez, B. L., Curb, J. D., Davis, J., Shintani, T., Perez, M. H., Apau-Ludlum, N., Johnson, C. and Harrigan, R. C. 2012. Use of the dietary supplement 5-aminiolevulinic acid (5-ALA) and its relationship with glucose levels and hemoglobin A1C among individuals with prediabetes. Clin. Transl. Sci. 5, 314-320.   DOI
7 Uchida, A., Kidokoro, K., Sogawa, Y., Itano, S., Nagasu, H., Satoh, M., Sasaki, T. and Kashihara, N. 2019. 5-aminolevulinic acid exerts renoprotective effect via Nrf2 activation in murine rhabdomyolysis-induced acute kidney injury. Nephrology 24, 28-38.   DOI
8 Zhao, M., Zhu, P., Fujino, M., Nishio, Y., Chen, J., Ito, H., Takahashi, K., Nakajima, M., Tanaka, T., Zhao, L., Zhuang, J. and Li, X. K. 2016. 5-Aminolevulinic acid with sodium ferrous citrate induces autophagy and protects cardiomyocytes from hypoxia-induced cellular injury through MAPK-Nrf-2-HO-1 signaling cascade. Biochem. Biophys. Res. Commun. 479, 663-669.   DOI
9 Ostareck, D. H. and Ostareck-Lederer, A. 2019. RNA-binding proteins in the control of LPS-induced macrophage response. Front. Genet. 10, 31.   DOI
10 Lu, Y. C., Jayakumar, T., Duann, Y. F., Chou, Y. C., Hsieh, C. Y., Yu, S. Y., Sheu, J. R. and Hsiao, G. 2011. Chondroprotective role of sesamol by inhibiting MMPs expression via retaining NF-kappaB signaling in activated SW1353 cells. J. Agric. Food. Chem. 59, 4969-4978.   DOI
11 Patergnani, S., Bouhamida, E., Leo, S., Pinton, P. and Rimessi, A. 2021. Mitochondrial oxidative stress and "Mito-Inflammation": Actors in the diseases. Biomedicines 9, 216.   DOI
12 Rahman, I. and MacNee, W. 1998. Role of transcription factors in inflammatory lung diseases. Thorax 53, 601-612.   DOI
13 Rani, V., Deep, G., Singh, R. K., Palle, K. and Yadav, U. C. 2016. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 148, 183-193.   DOI
14 Rigoglou, S. and Papavassiliou, A. G. 2013. The NF-κB signalling pathway in osteoarthritis. Int. J. Biochem. Cell. Biol. 45, 2580-2584.   DOI
15 Rocca, B. and FitzGerald, G. A. 2002. Cyclooxygenases and prostaglandins: shaping up the immune response. Int. Immunopharmacol. 2, 603-630.   DOI
16 Kauppinen, A., Suuronen, T., Ojala, J., Kaarniranta, K. and Salminen, A. 2013. Antagonistic crosstalk between NFkappaB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal. 25, 1939-1948.   DOI
17 Saitoh, S., Okano, S., Nohara, H., Nakano, H., Shirasawa, N., Naito, A., Yamamoto, M., Kelly, V. P., Takahashi, K., Tanaka, T., Nakajima, M. and Nakajima, O. 2018. 5-aminolevulinic acid (ALA) deficiency causes impaired glucose tolerance and insulin resistance coincident with an attenuation of mitochondrial function in aged mice. PLoS One 13, e0189593.   DOI
18 Ogura, S., Maruyama, K., Hagiya, Y., Sugiyama, Y., Tsuchiya, K., Takahashi, K., Abe, F., Tabata, K., Okura, I., Nakajima, M. and Tanaka, T. 2011. The effect of 5-aminolevulinic acid on cytochrome c oxidase activity in mouse liver. BMC Res. Notes 4, 66.   DOI
19 Ip, W. K. E., Hoshi, N., Shouval, D. S., Snapper, S. and Medzhitov, R. 2017. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356, 513-519.   DOI
20 Kaminska, B. 2005. MAPK signalling pathways as molecular targets for anti-inflammatory therapy-from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta 1754, 253-262.   DOI
21 Kwon, D. H., Lee, H., Park, C., Hong, S. H., Hong, S. H., Kim, G. Y., Cha, H. J., Kim, S., Kim, H. S., Hwang, H. J. and Choi, Y. H. 2019. Glutathione induced immune-stimulatory activity by promoting M1-like macrophages polarization via potential ROS scavenging capacity. Antioxidants (Basel) 8, 413.   DOI
22 Lee, Y. G., Lee, J., Byeon, S. E., Yoo, D. S., Kim, M. H., Lee, S. Y. and Cho, J. Y. 2011. Functional role of Akt in macrophage-mediated innate immunity. Front. Biosci (Landmark Ed). 16, 517-530.   DOI
23 Zamyatina, A. and Heine, H. 2020. Lipopolysaccharide recognition in the crossroads of TLR4 and caspase-4/11 mediated inflammatory pathways. Front. Immunol. 11, 585146.   DOI
24 Monteiro, L. B., Davanzo, G. G., de Aguiar, C. F. and Moraes-Vieira, P. M. M. 2020. Using flow cytometry for mitochondrial assays. MethodsX 7, 100938.   DOI
25 Nikaido, H. 2003. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593-656.   DOI
26 Miyake, M., Tanaka, N., Asakawa, I., Yamaki, K., Inoue, T., Suzuki, S., Hori, S., Nakai, Y., Anai, S., Torimoto, K., Toritsuka, M., Nakagawa, H., Tsukamoto, S., Fujii, T., Ohbayashi, C., Hasegawa, M., Kasahara, M. and Fujimoto, K. 2020. A prospective study of oral 5-aminolevulinic acid to prevent adverse events in patients with localized prostate cancer undergoing low-dose-rate brachytherapy: Protocol of the AMBER study. Contemp. Clin. Trials Commun. 19, 100593.   DOI
27 Takase, N., Inden, M., Sekine, S. I., Ishii, Y., Yonemitsu, H., Iwashita, W., Kurita, H., Taketani, Y. and Hozumi, I. 2017. Neuroprotective effect of 5-aminolevulinic acid against low inorganic phosphate in neuroblastoma SH-SY5Y cells. Sci. Rep. 7, 5768.   DOI
28 Magnani, N. D., Marchini, T., Calabro, V., Alvarez, S. and Evelson, P. 2020. Role of mitochondria in the redox signaling network and its outcomes in high impact inflammatory syndromes. Front. Endocrinol (Lausanne). 11, 568305.   DOI
29 Tsan, M. F. 2006. Toll-like receptors, inflammation and cancer. Semin. Cancer Biol. 16, 32-37.   DOI
30 Xiao, B., Deng, X., Zhou, W. and Tan, E. K. 2016. Flow cytometry-based assessment of mitophagy using MitoTracker. Front. Cell. Neurosci. 10, 76.
31 Terada, Y., Inoue, K., Matsumoto, T., Ishihara, M., Hamada, K., Shimamura, Y., Ogata, K., Inoue, K., Taniguchi, Y., Horino, T., Karashima, T., Tamura, K., Fukuhara, H., Fujimoto, S., Tsuda, M. and Shuin, T. 2013. 5-Aminolevulinic acid protects against cisplatin-induced nephrotoxicity without compromising the anticancer efficiency of cisplatin in rats in vitro and in vivo. PLoS One 8, e80850.   DOI
32 Mills, E. L. and O'Neill, L. A. 2016. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur. J. Immunol. 46, 13-21.   DOI
33 Tan, H. Y., Wang, N., Li, S., Hong, M., Wang, X. and Feng, Y. 2016. The reactive oxygen species in macrophage polarization: Reflecting its dual role in progression and treatment of human diseases. Oxid. Med. Cell. Longev. 2016, 2795090.   DOI
34 Higashikawa, F., Noda, M., Awaya, T., Tanaka, T. and Sugiyama, M. 2013. 5-Aminolevulinic acid, a precursor of heme, reduces both fasting and postprandial glucose levels in mildly hyperglycemic subjects. Nutrition 29, 1030-1036.   DOI
35 Ji, S. Y., Cha, H. J., Molagoda, I. M. N., Kim, M. Y., Kim, S. Y., Hwangbo, H., Lee, H., Kim, G. Y., Kim, D. H., Hyun, J. W., Kim, H. S., Kim, S., Jin, C. Y. and Choi, Y. H. 2021. Suppression of lipopolysaccharide-induced inflammatory and oxidative response by 5-aminolevulinic acid in RAW 264.7 macrophages and zebrafish larvae. Biomol. Ther (Seoul). doi: 10.4062/biomolther.2021.030.   DOI
36 Kim, S. Y., Jin, C. Y., Kim, C. H., Yoo, Y. H., Choi, S. H., Kim, G. Y., Yoon, H. M., Park, H. T. and Choi, Y. H. 2019. Isorhamnetin alleviates lipopolysaccharide-induced inflammatory responses in BV2 microglia by inactivating NF-κB, blocking the TLR4 pathway and reducing ROS generation. Int. J. Mol. Med. 43, 682-692.
37 Liu, C., Zhu, P., Fujino, M., Isaka, Y., Ito, H., Takahashi, K., Nakajima, M., Tanaka, T., Zhuang, J. and Li, X. K. 2019. 5-Aminolaevulinic acid (ALA), enhances heme oxygenase (HO)-1 expression and attenuates tubulointerstitial fibrosis and renal apoptosis in chronic cyclosporine nephropathy. Biochem. Biophys. Res. Comm. 508, 583-589.   DOI
38 Muralidharan, S. and Mandrekar, P. 2013. Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J. Leukoc. Biol. 94, 1167-1184.   DOI
39 Higashikawa, F., Kanno, K., Ogata, A. and Sugiyama, M. 2020. Reduction of fatigue and anger-hostility by the oral administration of 5-aminolevulinic acid phosphate: a randomized, double-blind, placebo-controlled, parallel study. Sci. Rep. 10, 16004.   DOI
40 Picca, A., Calvani, R., Coelho-Junior, H. J. and Marzetti, E. 2021. Cell death and inflammation: The role of mitochondria in health and disease. Cells 10, 537.   DOI
41 Aderem, A. and Ulevitch, R. J. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406, 782-787.   DOI
42 Fujino, M., Nishio, Y., Ito, H., Tanaka, T. and Li, X. K. 2016. 5-Aminolevulinic acid regulates the inflammatory response and alloimmune reaction. Int. Immunopharmacol. 37, 71-78.   DOI