DOI QR코드

DOI QR Code

Suppressive effects of ethanol extract of Aralia elata on UVB-induced oxidative stress in human keratinocytes

자외선 B를 조사한 인간유래각질세포에서 두릅순 에탄올추출물의 산화적 스트레스 억제효과

  • Kwak, Chung Shil (Institute on Aging, Seoul National University College of Medicine) ;
  • Yang, Jiwon (Institute on Aging, Seoul National University College of Medicine)
  • 곽충실 (서울대학교 의과대학 노화고령사회연구소) ;
  • 양지원 (서울대학교 의과대학 노화고령사회연구소)
  • Received : 2016.05.16
  • Accepted : 2016.06.15
  • Published : 2016.06.30

Abstract

Purpose: Ultraviolet (UV)-induced oxidative stress contributes to several adverse biological effects on skin. Many phenolic phytochemicals have been shown to have antioxidant properties and protect skin cells from UV-induced oxidative damage. In this study, we investigated whether or not Aralia elata (AE) has a protective effect against UVB-induced reactive oxygen species (ROS), ultimately leading to photoaging. Methods: Phenolic content of dried AE and antioxidant properties of AE extract in 70% ethanol weredetermined by measuring DPPH and ABTS radical scavenging activities and ferric reducing antioxidant power (FRAP). The effect of AE extract on cellular ROS generation and expression levels of oxidative stress-response proteins such as superoxide dismutase (SOD)-1, catalase, nuclear factor-erythroid 2-related factor (Nrf)-2, and heme oxygenase (HO)-1 in UVB-irradiated ($75mJ/cm^2$) human keratinocytes (HaCaT) were further determined by 2'-7'-dichlorofluoresceine diacetate assay and Western blotting, respectively. Results: The total phenolic and flavonoid contents of dried AE were 20.15 mg tannic acid/g and 18.75 mg rutin/g, respectively. The $IC_{50}$ of AE extract against DPPH radical was $98.5{\mu}g/mL$, and ABTS radical scavenging activity and FRAP upon treatment with $1,000{\mu}g/mL$ of AE extract were $41.8{\mu}g\;ascorbic\;acid\;(AA)\;eq./mL$ and $29.7{\mu}g\;AA\;eq./mL$,m respectively. Pretreatment with AE extract significantly reduced (p < 0.05) ROS generation compared to that in UVB-irradiated control HaCaT cells. Pretreatment with AE extract reversed reduction of Nrf-2 and SOD-1 protein expression and induction of HO-1 protein expression caused by UVB exposure in HaCaT cells, whereas it did not affect catalase expression. Conclusion: AE extract in 70% ethanol demonstrated a protective effect against UVB-induced oxidative stress and decreased expression of Nrf-2 and SOD-1 in human keratinocytes. These findings suggest that AE ethanol extract might have potential as a natural resource for a skin anti-photoaging product in the food and cosmetic industry.

두릅순에서 얻은 70% 에탄올 추출물의 in vitro 항산화 효과를 측정하고, UVB에 의한 피부광노화를 유도하는 주요 원인인 ROS의 생성을 억제하는 효과가 있는지 알아보기 위하여 인간유래각질세포 (HaCaT)를 이용하여 실험을 수행하였다. 두릅순의 총 폴리페놀과 플라보노이드 함량은 각각 20.15 mg tannic acid/g dry wt, 18.75 mg rutin/g dry wt 이었고, 70% 에탄올 추출물의 DPPH 라디칼을 소거능 ($IC_{50}$)은 $98.5{\mu}g\;AA\;eq./mL$이었으며, $1,000{\mu}g/mL$ 농도에서 ABTS 라디칼 소거능과 환원력 (FRAP)은 각각 $41.8{\mu}g\;ascorbic\;acid\;(AA)\;eq./mL$$29.7{\mu}g\;AA\;eq./mL$로 우수한 항산화효과를 보였다. 두릅순 추출물을 HaCaT 세포에 24시간 전처리했을 때 UVB 조사에 의한 ROS 생성이 유의하게 감소되었으며, 산화적 스트레스에 민감하게 반응하는 전사인자인 Nrf-2와 각질세포에서 ROS를 제거하는 역할을 하는 주요 항산화효소인 SOD-1의 단백질 수준의 발현은 증가한 반면, UVB 조사에 의하여 증가하였던 HO-1의 단백질 발현은 감소되었다. 그러나, catalase의 단백질 발현에는 영향을 주지 못하였다. 본 연구결과는 두릅순 70% 에탄올 추출물에 함유된 항산화효능이 우수한 어떤 페놀화합물들이 UVB 조사로 인하여 생성된 ROS를 직접적으로 제거할 뿐 아니라 각질세포에 존재하는 방어시스템의 활성화를 통하여 산화적 스트레스로 인한 악영향을 막아줄 가능성을 제시하고 있다. 따라서, 두릅순 70% 에탄올 추출물은 UVB에 의한 피부손상 및 피부광노화를 억제하는 기능성식품 및 화장품 소재로 이용될 수 있을 것이다.

Keywords

References

  1. Jenkins G. Molecular mechanisms of skin ageing. Mech Ageing Dev 2002; 123(7): 801-810. https://doi.org/10.1016/S0047-6374(01)00425-0
  2. Yoo HG, Lee BH, Kim W, Lee JS, Kim GH, Chun OK, Koo SI, Kim DO. Lithospermum erythrorhizon extract protects keratinocytes and fibroblasts against oxidative stress. J Med Food; 2014 17(11): 1189-1196. https://doi.org/10.1089/jmf.2013.3088
  3. Debacq-Chainiaux F, Leduc C, Verbeke A, Toussaint O. UV, stress and aging. Dermatoendocrinol 2012; 4(3): 236-240. https://doi.org/10.4161/derm.23652
  4. Kim M, Park YG, Lee HJ, Lim SJ, Nho CW. Youngiasides A and C isolated from Youngia denticulatum inhibit UVB-indeced MMP expression and promote type 1 procollagen production via repression of MAPK/AP-1/NF-${\kappa}B$ and activation of AMPK/Nrf2 in HaCat cells and human dermal fibroblasts. J Agric Food Chem 2015; 63(22): 5428-5438. https://doi.org/10.1021/acs.jafc.5b00467
  5. Fernandez-Garcia E. Skin protection against UV light by dietary antioxidants. Food Funct 2014; 5(9): 1994-2003. https://doi.org/10.1039/C4FO00280F
  6. Offord EA, Gautier JC, Avanti O, Scaletta C, Runge F, Kramer K, Applegate LA. Photoprotective potential of lycopene, beta-carotene, vitamin E, vitamin C and carnosic acid in UVA-irradiated human skin fibroblasts. Free Radic Biol Med 2002; 32(12): 1293-1303. https://doi.org/10.1016/S0891-5849(02)00831-6
  7. Chen L, Hu JY, Wang SQ. The role of antioxidants in photoprotection: a critical review. J Am Acad Dermatol 2012; 67(5): 1013-1024. https://doi.org/10.1016/j.jaad.2012.02.009
  8. Marrot L, Jones C, Perez P, Meunier JR. The significance of Nrf2 pathway in (photo)-oxidative stress response in melanocytes and keratinocytes of the human epidermis. Pigment Cell Melanoma Res 2008; 21(1): 79-88. https://doi.org/10.1111/j.1755-148X.2007.00424.x
  9. Patwardhan J, BhattP. Ultraviolet-B protective effect of flavonoids from Eugenia caryophylata on human dermal fibroblast cells. Pharmacogn Mag 2015;11 (Suppl 3): S397-S406. https://doi.org/10.4103/0973-1296.168979
  10. Hwang E, Lee DG, Park SH, Oh MS, Kim SY. Coriander leaf extract exerts antioxidant activity and protects against UVBinduced photoaging of skin by regulation of procollagen type I and MMP-1 expression. J Med Food 2014; 17(9): 985-995. https://doi.org/10.1089/jmf.2013.2999
  11. Wang M, Xu X, Xu H, Wen F, Zhang X, Sun H, Yao F, Sun G, Sun X. Effect of the total saponins of Aralia elata (Miq) Seem on cardiac contractile function and intracellular calcium cycling regulation. J Ethnopharmacol 2014; 155(1): 240-247. https://doi.org/10.1016/j.jep.2014.05.024
  12. Shin KH, Cho SY, Lee MK, Lee JS, Kim MJ. Effects of Aralia elata, Acanthopanacis cortex and Ulmus davidiana water extracts on plasma biomarkers in streptozotocin-induced diabetic rats. J Korean Soc Food Sci Nutr 2004; 33(9): 1457-1462. https://doi.org/10.3746/jkfn.2004.33.9.1457
  13. Kim YH, Im JG. Effect of saponin from the shoot of Aralia elata in normal rats and streptozotocin induced diabetic rats. J Korean Soc Food Sci Nutr 1999; 28(44): 912-916.
  14. Suh SJ, Jin UH, Kim KW, Son JK, Lee SH, Son KH, Chang HW, Lee YC, Kim CH. Triterpenoid saponin, oleanolic acid 3-O-betad-glucopyranosyl(1->3)-${\alpha}$-L-rhamnopyranosyl(1->2)-${\alpha}$-L-arabinopyranoside (OA) from Aralia elata inhibits LPS-induced nitric oxide production by down-regulated NF-${\kappa}B$ in raw 264.7 cells. Arch Biochem Biophys 2007; 467(2): 227-233. https://doi.org/10.1016/j.abb.2007.08.025
  15. Lee JH, Jeong CS. Suppressive effects on the biosynthesis of inflammatory mediators by Aralia elata extract fractions in macrophage cells. Environ Toxicol Pharmacol 2009; 28(3): 333-341. https://doi.org/10.1016/j.etap.2009.05.009
  16. Cha JY, Ahn HY, Eom KE, Park BK, Jun BS, Cho YS. Antioxidative activity of Aralia elata shoot and leaf extracts. J Life Sci; 2009 19(5): 652-658. https://doi.org/10.5352/JLS.2009.19.5.652
  17. Tomatsu M, Ohnishi-Kameyama M, Shibamoto N. Aralin, a new cytotoxic protein from Aralia elata, inducing apoptosis in human cancer cells. Cancer Lett 2003; 199(1): 19-25. https://doi.org/10.1016/S0304-3835(03)00348-3
  18. Chung CK, Jung ME. Ethanol fraction of Aralia elata Seemann enhances antioxidant activity and lowers serum lipids in rats when administered with Benzo(${\alpha}$)pyrene. Biol Pharm Bull 2003; 26(10): 1502-1504. https://doi.org/10.1248/bpb.26.1502
  19. Chae SK, Kang GS, Ma SJ, Bang KW, Oh MW, Oh SH. Determination of flavonoid contnet in citrus. In: Standard Food Analysis. Seoul: Jigumoonwhasa; 2002. p. 581-582.
  20. Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods Enzymol 1999; 299: 152-178.
  21. Senba Y, Nishishita T, Saito K, Yoshioka H, Yoshioka H. Stoppedflow and spectrophotometric study on radical scavenging by tea catechins and model compound. Chem Pharm Bull (Tokyo) 1999; 47(10): 1369-1374. https://doi.org/10.1248/cpb.47.1369
  22. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999; 26(9-10): 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  23. Yildirim A, Mavi A, Kara AA. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J Agric Food Chem 2001; 49(8): 4083-4089. https://doi.org/10.1021/jf0103572
  24. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65(1-2): 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  25. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem 1976; 72(1-2): 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  26. Rice-Evans C, Miller N, Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci 1997; 2(4): 152-159. https://doi.org/10.1016/S1360-1385(97)01018-2
  27. Nakayama T, Niimi T, Osawa T, Kawakishi S. The protective role of polyphenols in cytotoxicity of hydrogen peroxide. Mutat Res 1992; 281(2): 77-80. https://doi.org/10.1016/0165-7992(92)90039-K
  28. Toda M, Okubo S, Hiyoshi R, Shimamura T. The bactericidal activity of tea and coffee. Lett Appl Microbiol 1989; 8(4): 123-125. https://doi.org/10.1111/j.1472-765X.1989.tb00255.x
  29. Middleton E Jr, Kandaswami CC. Potential health-promoting properties of citrus flavonoids. Food Technol 1994; 48(11): 115-119.
  30. Kang MH, Park CG, Cha MS, Seong NS, Chung HK, Lee JB. Component characteristics of each extract prepared by different extract methods from by-products of Glycyrrhizia uralensis. J Korean Soc Food Sci Nutr 2001; 30(1): 138-142.
  31. Chang ST, Wu JH, Wang SY, Kang PL, Yang NS, Shyur LF. Antioxidant activity of extracts from Acacia confusa bark and heartwood. J Agric Food Chem 2001; 49(7): 3420-3424. https://doi.org/10.1021/jf0100907
  32. Bekir J, Mars M, Souchard JP, Bouajila J. Assessment of antioxidant, anti-inflammatory, anti-cholinesterase and cytotoxic activities of pomegranate (Punica granatum) leaves. Food Chem Toxicol 2013; 55: 470-475. https://doi.org/10.1016/j.fct.2013.01.036
  33. Kwak CS, Lee KJ, Chang JH, Park JH, Cho JH, Park JH, Kim KM, Lee MS. In vitro antioxidant and anti-inflammatory effects of ethanol extracts from Korean sweet potato leaves and stalks. J Korean Soc Food Sci Nutr 2013; 42(3): 369-377. https://doi.org/10.3746/jkfn.2013.42.3.369
  34. Park SC, Lee MS, Kim HS. Investigate on aging-delay and agingrelated disease prevention factors in Korean foods and construct database [Report to Ministry of Agriculture and Forestry]. Seoul: Seoul National University Medical Institute; 2004.
  35. Lee MS, Jeong HK, Kwak CS. A study on the systemic recording of Korean healthy traditional foods in Honam district and its cultural commercialization [Report to Ministry of Agriculture, Food and Rural Affairs: 11-1543000-000118-01]. Daejeon: Hannam University; 2013.
  36. Ham SA, Hwang JS, Kang ES, Yoo T, Lim HH, Lee WJ, Paek KS, Seo HG. Ethanol extract of Dalbergia odorifera protects skin keratinocytes against ultraviolet B-induced photoaging by suppressing production of reactive oxygen species. Biosci Biotechnol Biochem 2015; 79(5): 760-766. https://doi.org/10.1080/09168451.2014.993916
  37. Shindo Y, Witt E, Packer L. Antioxidant defense mechanisms in murine epidermis and dermis and their responses to ultraviolet light. J Invest Dermatol 1993; 100(3): 260-265. https://doi.org/10.1111/1523-1747.ep12469048
  38. Shindo Y, Hashimoto T. Antioxidant defence mechanism of the skin against UV irradiation: study of the role of catalase using acatalasaemia fibroblasts. Arch Dermatol Res 1995; 287(8): 747-753. https://doi.org/10.1007/BF01105800
  39. Shindo Y, Witt E, Han D, Epstein W, Packer L. Enzymic and nonenzymic antioxidants in epidermis and dermis of human skin. J Invest Dermatol 1994; 102(1): 122-124. https://doi.org/10.1111/1523-1747.ep12371744
  40. Piao MJ, Kang KA, Kim KC, Chae S, Kim GO, Shin T, Kim HS, Hyun JW. Diphlorethohydroxycarmalol attenuated cell damage against UVB radiation via enhancing antioxidant effects and absorbing UVB ray in human HaCaT keratinocytes. Environ Toxicol Pharmacol 2013; 36(2): 680-688. https://doi.org/10.1016/j.etap.2013.06.010
  41. Liochev SI, Fridovich I. The role of O2.-in the production of HO.: in vitro and in vivo. Free Radic Biol Med 1994; 16(1): 29-33. https://doi.org/10.1016/0891-5849(94)90239-9
  42. Sasaki H, Akamatsu H, Horio T. Protective role of copper, zinc superoxide dismutase against UVB-induced injury of the human keratinocyte cell line HaCaT. J Invest Dermatol 2000; 114(3): 502-507. https://doi.org/10.1046/j.1523-1747.2000.00914.x
  43. Hashimoto Y, Ohkuma N, Iizuka H. Reduced superoxide dismutase activity in UVB-induced hyperproliferative pig epidermis. Arch Dermatol Res 1991; 283(5): 317-320. https://doi.org/10.1007/BF00376620
  44. Song JL, Gao Y. Protective effects of Lindera coreana on UVBinduced oxidative stress in human HaCaT keratinocytes. Iran J Pharm Res 2014; 13(4): 1369-1378.
  45. Jeon SE, Choi-Kwon S, Park KA, Lee HJ, Park MS, Lee JH, Kwon SB, Park KC. Dietary supplementation of (+)-catechin protects against UVB-induced skin damage by modulating antioxidant enzyme activities. Photodermatol Photoimmunol Photomed 2003; 19(5): 235-241. https://doi.org/10.1034/j.1600-0781.2003.00052.x
  46. Panchenko MV, Farber HW, Korn JH. Induction of hemeoxygenase-1 by hypoxia and free radicals in human dermal fibroblasts. Am J Physiol Cell Physiol 2000; 278(1): C92-C101. https://doi.org/10.1152/ajpcell.2000.278.1.C92
  47. Obermuller-Jevic UC, Schlegel B, Flaccus A, Biesalski HK. The effect of ${\beta}$-carotene on the expression of interleukin-6 and heme oxygenase-1 in UV-irradiated human skin fibroblasts in vitro. FEBS Lett 2001; 509(2): 186-190. https://doi.org/10.1016/S0014-5793(01)03169-6

Cited by

  1. Anti-Inflammatory and Skin-Moisturizing Effects of a Flavonoid Glycoside Extracted from the Aquatic Plant Nymphoides indica in Human Keratinocytes vol.23, pp.9, 2018, https://doi.org/10.3390/molecules23092342
  2. 두릅순 에탄올 추출물의 인간유래 피부각질형성세포와 피부섬유아세포에서의 자외선에 의한 광노화 억제효과 vol.49, pp.6, 2016, https://doi.org/10.4163/jnh.2016.49.6.429
  3. 자외선 B에 유도된 사람유래 HaCaT cells에서의 오미자 종자 분획물의 항산화 및 항노화 효과 vol.29, pp.10, 2019, https://doi.org/10.5352/jls.2019.29.10.1071