• Title/Summary/Keyword: Output feedback controller

Search Result 535, Processing Time 0.026 seconds

A New Approach to Design of a Dynamic Output Feedback Stabilizing Control Law for LTI Systems

  • Son Young-Ik;Shim Hyungbo;Jo Nam-Hoon;Kim Kab-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.618-624
    • /
    • 2005
  • We present a new state-space approach to construct a dynamic output feedback controller which stabilizes a class of linear time invariant systems. All the states of the given system are not measurable and only the output is used to design the stabilizing control law. In the design scheme, however, we first assume that the given system can be stabilized by a feedback law composed of the output and its derivatives of a certain order. Beginning with this assumption, we systematically construct a dynamic system which removes the need of the derivatives. The main advantage of the proposed controller is regarding the controller order, which may be smaller than that of conventional output feedback controller. Using a simple numerical example, it is shown that the order of the proposed controller is indeed smaller than that of reduced-order observer based output feedback controller.

Web Tension Control Using Output Feedback

  • Oh, Seung-Rohk
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.213-218
    • /
    • 2007
  • We consider a web transport system. The objective of this paper is to design the output feedback controller such that the controller can track a desired tension and processing speed on web transport system. We propose the new design method using observer and feedback linearization technique. The proposed method use a nonlinear feedback to transform to linear system and high gain observer to estimate the state value. We show that the proposed controller can achieve the control object using only output. We show a performance of controller via the simulation.

  • PDF

An Output Feedback Controller for a Ball and Beam System under Measurement Noise of Feedback Sensor (센서에 측정에러가 있는 볼-빔 시스템의 출력 궤환 제어기)

  • Kim, Hyun-Do;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.955-959
    • /
    • 2011
  • In this paper, we assume that an output sensor of a ball and beam system is coupled with AC measurement noise. We propose an output feedback controller for a ball and beam system under measurement noise of feedback sensor. Measurement noise makes feedback signals distorted, and results in performance degradation or even system failure. Therefore, we need to design a robust controller to accommodate the possible measurement noise in the feedback information. Our controller is equipped with a gain-scaling factor to minimize the effect of measurement noise in output feedback information. We give an analysis of the controlled system and illustrate the improved control performance via simulation and experiment for a ball and beam system.

Design of Single-Input Single-Output Positive Position Feedback Controller For the Control of Multiple Modes (다중모드제어를 위한 단일 입출력 양변위 되먹임제어기의 설계)

  • Jeong, Moon-San;Kwak, Moon-K.;Lee, Myung-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.310-313
    • /
    • 2005
  • This paper is concerned with the active vibration control of beam equipped with piezoceramic sensors and actuators. The single-input and single-output positive position feedback controller is considered as an active vibration controller for the beam. The proposed single-input and single-output positive position feedback controller can cope with many modes of interest by summing each positive position feedback controller designed for each mode. In this paper, theoretical formulation is first explained in detail. We discuss how to design the single-input and single-output positive position feedback controller for a target structure by considering Euler-Bemoulli beam. It is found that the theories developed in this study are capable of predicting the control system characteristics and its performance.

  • PDF

Decentralized Input-Output Feedback Linearizing Control for a Multi-Machine Power System using Output Modification (수정된 출력을 이용한 다기 전력 계통의 분살 입출력 되먹임 선형화 제어)

  • Jee, Hwang;Yoon, Tae-Woong;Kim, Seok-Kyoon
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.291-294
    • /
    • 2006
  • This paper presents a decentralized input-output feedback linearizing controller for a multi-machine power system. Firstly, the controller is designed using input-output feedback linearization for modified outputs. Then we present a guideline for selecting gains of the controller and parameters in the modified outputs. Simulations illustrate the effectiveness of the proposed control scheme and the selection guideline.

  • PDF

Fixed-Order $H_{\infty}$ Controller Design for Descriptor Systems

  • Zhai, Guisheng;Yoshida, Masaharu;Koyama, Naoki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.898-902
    • /
    • 2003
  • For linear descriptor systems, we consider the $H_{INFTY}$ controller design problem via output feedback. Both static output feedback and dynamic one are discussed. First, in the case of static output feedback, we reduce our control problem to solving a bilinear matrix inequality (BMI) with respect to the controller coefficient matrix, a Lyapunov matrix and a matrix related to the descriptor matrix. Under a matching condition between the descriptor matrix and the measured output matrix (or the control input matrix), we propose setting the Lyapunov matrix in the BMI as being block diagonal appropriately so that the BMI is reduced to LMIs. For fixed-order dynamic $H_{INFTY}$ output feedback, we formulate the control problem equivalently as the one of static output feedback design, and thus the same approach can be applied.

  • PDF

Design and Analysis of an Output Feedback Controller for a Chain of Integrators System Compensating Measurement Noise of Feedback Sensor (적분기 시스템에서 센서의 측정에러를 보상하는 출력 궤환 제어기 설계 및 분석)

  • Kim, Hyun-Do;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.299-303
    • /
    • 2011
  • In this paper, we propose an output feedback controller for a chain of integrators system compensating measurement noise of feedback sensor. Measurement noise makes feedback signals distorted, and results in performance degradation or even system failure. Therefore, we need to design a robust controller to accommodate the possible measurement noise in the feedback information. Our controller is equipped with a gain-scaling factor to reject or minimize the effect of measurement noise in output feedback information. We give a theoretical analysis of the controlled system and illustrate the improved control performance via an example.

A New Robust Output Feedback Variable Structure Controller for Uncertain More Affine Nonlinear Systems with Mismatched Uncertainties and Matched Disturbance

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.206-213
    • /
    • 2014
  • In this note, a new robust nonlinear output feedback variable structure controller is first systematically and generally designed for the output control of more affine uncertain nonlinear systems with mismatched uncertainties and matched disturbance. A transformed integral output feedback sliding surface with a most simple form is applied in order to remove the reaching phase problems. The closed loop exponential stability and the existence condition of the sliding mode on the integral output feedback sliding surface is investigated with a corresponding output feedback control input in Theorem 1. For practical application the continuous implementation of the control input is made by the modified saturation function. The effectiveness of the proposed controller is verified through a design example and simulation study.

State- and Output-feedback Adaptive Controller for Pure-feedback Nonlinear Systems using Self-structuring Fuzzy System (완전 궤환 비선형 계통에 대한 자기 구조화 퍼지 시스템을 이용한 상태변수 및 출력 궤환 적응 제어기)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Jang, Young-Hak;Ryoo, Young-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1319-1329
    • /
    • 2012
  • Globally stabilizing adaptive fuzzy state- and output-feedback controllers for the fully nonaffine pure-feedback nonlinear system are proposed in this paper. By reformulating the original pure-feedback system to a standard normal form with respect to newly defined state variables, the proposed controllers require no backstepping design procedures. Avoiding backstepping makes the controller structure and stability analysis to be considerably simplified. For the global stabilty of the clossed-loop system, the self-structuring fuzzy system whose memebership functions and fuzzy rules are automatically generated and tuned is adopted. The proposed controllers employ only one fuzzy logic system to approximate unknown nonlinear function, which highlights the simplicity of the proposed adaptive fuzzy controller. Moreover, the output-feedback controller of the considered system proposed in this paper have not been dealt with in any literature yet.

Robust Non-Fragile $H_{\infty}$ Output Feedback Control for Descriptor Systems with Parameter Uncertainties (변수 불확실성을 가지는 특이시스템의 강인 비약성 $H_{\infty}$ 출력궤환 제어)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.389-395
    • /
    • 2007
  • In this paper, we consider the robust non-fragile $H_{\infty}$ output feedback controller design method for uncertain descriptor systems with feedback and observer gain variations. The existence condition of observer-based robust and non-fragile $H_{\infty}$ output feedback controller and the controller design method are Presented on the basis of linear matrix inequality approach. The proposed robust non-fragile $H_{\infty}$ output feedback controller guarantees asymptotic stability, non-fragility, $H_{\infty}$ norm bound within a prescribed level in spite of disturbance, parameter uncertainty, and feedback/observer gain variations.