• 제목/요약/키워드: Output Current

검색결과 3,997건 처리시간 0.036초

DSP Based Series-Parallel Connected Two Full-Bridge DC-DC Converter with Interleaving Output Current Sharing

  • Sha, Deshang;Guo, Zhiqiang;Lia, Xiaozhong
    • Journal of Power Electronics
    • /
    • 제10권6호
    • /
    • pp.673-679
    • /
    • 2010
  • Input-series-output-parallel (ISOP) connected DC-DC converters enable low voltage rating switches to be used in high voltage input applications. In this paper, a DSP is adopted to generate digital phase-shifted PWM signals and to fulfill the closed-loop control function for ISOP connected two full-bridge DC-DC converters. Moreover, a stable output current sharing control strategy is proposed for the system, with which equal sharing of the input voltage and the load current can be achieved without any input voltage control loops. Based on small signal analysis with the state space average method, a loop gain design with the proposed scheme is made. Compared with the conventional IVS scheme, the proposed strategy leads to simplification of the output voltage regulator design and better static and dynamic responses. The effectiveness of the proposed control strategy is verified by the simulation and experimental results of an ISOP system made up of two full-bridge DC-DC converters.

아몰퍼스와이어를 이용하여 제작한 직교 플럭스게이트 센서의 출력에 미치는 구동 주파수와 여자 전류의 영향 (Influences of Operation Frequency and Excitation Current on Output Signal of Orthogonal Fluxgate Sensor Fabricated with an Amorphous Wire)

  • 신광호
    • 한국자기학회지
    • /
    • 제19권1호
    • /
    • pp.17-21
    • /
    • 2009
  • 코발트계 아몰퍼스와이어와 검출코일을 이용하여서 제작한 직교 플럭스게이트 센서에 있어서 구동주파수와 입력전류가 센서의 출력특성에 미치는 영향을 조사하였다. 구동전류가 0.3 A까지 증가함에 따라서 센서의 출력전압은 증가하는 경향을 나타내었으나, 그 이상의 구동전류에 대하여서는 출력전압의 증가율이 둔감하게 되었고 0.6 A 이상의 구동전류에 대하여서는 출력전압이 감소하는 경향을 나타내었다. 센서의 구동주파수를 1.3 MHz까지 높임으로써 출력전압을 높일 수 있었으나, 그 이상의 구동주파수에서는 출력전압이 감소하는 것을 알 수 있었다. 1.3MHz의 구동주파수에 대하여 출력전압은 3.8 V였으며, 1 MHz의 구동주파수에 대하여서는 1.32 V였다.

Current Detection 구조 및 향상된 Load Regulation 특성을 가진 LDO 레귤레이터 (LDO Regulator with Improved Load Regulation Characteristics and Current Detection Structure)

  • 권상욱;공준호;구용서
    • 전기전자학회논문지
    • /
    • 제25권3호
    • /
    • pp.506-510
    • /
    • 2021
  • 본 논문에서는 current detection 구조로 인하여 load regulation의 변화를 향상시킨 LDO를 제안하였다. 제안된 LDO 레귤레이터는 출력단에 제안된 current detection 회로를 추가하였다. 그로인하여 출력에 부하전류에 따른 전압 값의 regulation을 향상시켜 기존 LDO 레귤레이터보다 load Regulation의 변화량을 향상시켰다. 제안한 current detection 구조를 사용하여 부하전류의 변화에 따른 출력 변화를 약 60 % 가량 향상시킬 수 있었다. Cadence의 Virtuoso, Spectre 시뮬레이션을 사용하여 특성을 시뮬레이션 및 검증하였다.

고전압 용량성 결합 플라즈마 시스템의 개선된 전압 파형 출력을 위한 펄스 전류 발생장치 회로 (Current Source Type Pulse Generator with Improved Output Voltage Waveform for High Voltage Capacitively Coupled Plasma System)

  • 채범석;민주화;서용석;김현배
    • 전력전자학회논문지
    • /
    • 제24권3호
    • /
    • pp.153-160
    • /
    • 2019
  • This study proposes a current source-type pulse generator to improve output voltage and current waveforms under a capacitively coupled plasma (CCP) system. The proposed circuit comprises two parallel-connected current source-type converters. These converters can satisfy the required output waveforms of plasma processing. The parallel-connected converters operate without reverse current fault by applying a time-delay control technique. Conventional voltage source converters based on pulse power supply exhibit drawbacks in short-circuit current, and problems occur when they are applied to a CCP system. The proposed pulse power supply based on a current source converter fundamentally solves the short-circuit current problem. Therefore, this topology can improve the voltage and current accuracy of a CCP system.

Four Quadrant CMOS Current Differentiated Circuit

  • Parnklang, Jirawath;Manasaprom, Ampaul;Ukritnukul, Anek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.948-950
    • /
    • 2003
  • In this literature, the CMOS current mode fout quadrant differentiator circuit is proposed. The implementation is base on an appropriate input stage that converts the input current into a compressed voltage at the input capacitor ($C_{gs}$) of the CMOS driver circuit. This input voltage use as the control output current which flow to the output node by passing through a MOS active load and use it as the feedback voltage to the input node. Simulation results with level 49 CMOS model of MOSIS are given to demonstrate the correct operation of the proposed configuration. But the gain of the circuit is too low so the output differentiate current also low. The proposed differentiator is expected to find several applications in analog signal processing system.

  • PDF

전동기-발전기 실험장치(Motor-Generator Set)를 이용한 조류발전 시스템의 특성 분석 (Analysis of the Characteristics of the Tidal Current Power Generation System Using Motor-Generator Set)

  • 안원영;임형택;이석현;김근수;조철희
    • 신재생에너지
    • /
    • 제9권4호
    • /
    • pp.19-24
    • /
    • 2013
  • In order to analyze the characteristics of tidal current power generation system, we measured output power in M-G Set (Motor-Generator Set) and MATLAB/Simulink. We installed M-G Set (Motor-Generator Set) and did a simulation using MATLAB/Smulink. The simulation consisted of the tidal current turbine, PMSG, converter, and three-phase PWM inverter. Also, the speed control of the generator was performed using machine side converter. And we measured output voltage, current, power of the generator and the output power of three-phase PWM inverter.

A Realization of Biquadratic Current Transfer Functions Using Multiple-Output CCIIs

  • Higashimura, Masami;Fukui, Yutaka
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.155-158
    • /
    • 2000
  • Circuit configurations for realizing of biquadratic current transfer functions using current conveyors (CCIIs) are presented. The circuits are composed of three multiple-output CCIIs and four passive elements (two resistors and two grounded capacitors), and when current controlled conveyors (CCIIs) in place of CCIIs are employed, the circuit can be realized using three multiple-output CCIIs and two grounded capacitors. Use of grounded capacitors is suitable for integrated implementation. The cutoff frequency of a realized filter with current gain K can be tuned independently of Q by the value of K.

  • PDF

Slew-Rate Enhanced Low-Dropout Regulator by Dynamic Current Biasing

  • Jeong, Nam Hwi;Cho, Choon Sik
    • Journal of electromagnetic engineering and science
    • /
    • 제14권4호
    • /
    • pp.376-381
    • /
    • 2014
  • We present a CMOS rail-to-rail class-AB amplifier using dynamic current biasing to improve the delay response of the error amplifier in a low-dropout (LDO) regulator, which is a building block for a wireless power transfer receiver. The response time of conventional error amplifiers deteriorates by slewing due to parasitic capacitance generated at the pass transistor of the LDO regulator. To enhance slewing, an error amplifier with dynamic current biasing was devised. The LDO regulator with the proposed error amplifier was fabricated in a $0.35-{\mu}m$ high-voltage BCDMOS process. We obtained an output voltage of 4 V with a range of input voltages between 4.7 V and 7 V and an output current of up to 212 mA. The settling time during line transient was measured as $9{\mu}s$ for an input variation of 4.7-6 V. In addition, an output capacitor of 100 pF was realized on chip integration.

아날로그 - 디지털 스위칭 혼합형 저 리플- 고 효율 Li-Ion 배터리 충전기 (Analog-Digital Switching Mixed Mode Low Ripple - High Efficiency Li-Ion Battery Charger)

  • 정상화;우영진;김남인;조규형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2531-2533
    • /
    • 2001
  • This paper describes a low noise and high efficiency analog-digital switching mixed mode battery charger for production facilities of Li-Ion batteries. The requirements for battery chargers for production facilities are very strict. The accuracy of output voltage and output current should be below 0.1% with very low ripple current. Therefore analog type linear regulators are widely used for battery charger in spite of their inefficiency and bulkiness. We combined linear regulator as a voltage source with digital switching converter as a dependent current source. Low current ripple and high accuracy are obtained by linear regulator while high efficiency is achieved by digital switching converter. Experimental results show that proposed method has 0.1% ripple and 90% efficiency at an output current of 1A for a battery voltage of 4V.

  • PDF

A Novel Soft Switching PWM·PFC AC·DC Boost Converter

  • Sahin, Yakup
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.256-262
    • /
    • 2018
  • This study introduces a novel Soft Switching (SS) Pulse Width Modulated (PWM) AC-DC boost converter. In the proposed converter, the main switch is turned on with Zero Voltage Transition (ZVT) and turned off with Zero Current Transition (ZCT). The main diode is turned on with Zero Voltage Switching (ZVS) and turned off with Zero Current Switching (ZCS). The auxiliary switch is turned on and off with ZCS. All auxiliary semiconductor devices are turned on and off with SS. There is no extra current or voltage stress on the main semiconductor devices. The majority of switching energies are transferred to the output by auxiliary transformer. Thus, the current stress of auxiliary switch is significantly reduced. Besides, the proposed converter has simple structure and ease of control due to common ground. The theoretical analysis of the proposed converter is verified by a prototype with 100 kHz switching frequency and 500 W output power. Furthermore, the efficiency of the proposed converter is 98.9% at nominal output power.